import pandas as pd
import numpy as np
from sklearn.learning_curve import learning_curve
import matplotlib.pyplot as plt
def plot_learning_curve(estimator, title, X, y, ylim=None, cv=None,
n_jobs=1, train_sizes=np.linspace(.1, 1.0, 5)):
"""
Generate a simple plot of the test and traning learning curve.
Parameters
----------
estimator : object type that implements the "fit" and "predict" methods
An object of that type which is cloned for each validation.
title : string
Title for the chart.
X : array-like, shape (n_samples, n_features)
Training vector, where n_samples is the number of samples and
n_features is the number of features.
y : array-like, shape (n_samples) or (n_samples, n_features), optional
Target relative to X for classification or regression;
None for unsupervised learning.
ylim : tuple, shape (ymin, ymax), optional
Defines minimum and maximum yvalues plotted.
cv : integer, cross-validation generator, optional
If an integer is passed, it is the number of folds (defaults to 3).
Specific cross-validation objects can be passed, see
sklearn.cross_validation module for the list of possible objects
n_jobs : integer, optional
Number of jobs to run in parallel (default 1).
"""
plt.figure()
plt.title(title)
if ylim is not None:
plt.ylim(*ylim)
plt.xlabel("Training examples")
plt.ylabel("Score")
train_sizes, train_scores, test_scores = learning_curve(
estimator, X, y, cv=cv, n_jobs=n_jobs, train_sizes=train_sizes)
train_scores_mean = np.mean(train_scores, axis=1)
train_scores_std = np.std(train_scores, axis=1)
test_scores_mean = np.mean(test_scores, axis=1)
test_scores_std = np.std(test_scores, axis=1)
plt.grid()
plt.fill_between(train_sizes, train_scores_mean - train_scores_std,
train_scores_mean + train_scores_std, alpha=0.1,
color="r")
plt.fill_between(train_sizes, test_scores_mean - test_scores_std,
test_scores_mean + test_scores_std, alpha=0.1, color="g")
plt.plot(train_sizes, train_scores_mean, 'o-', color="r",
label="Training score")
plt.plot(train_sizes, test_scores_mean, 'o-', color="g",
label="Cross-validation score")
plt.legend(loc="best")
return plt
forest = ensemble.RandomForestClassifier(bootstrap=True, class_weight=None, max_depth=None, max_features='auto', max_leaf_nodes=None,min_samples_leaf=1, min_samples_split=6,min_weight_fraction_leaf=0.0, n_estimators=300, n_jobs=-1,oob_score=False, random_state=111, verbose=0, warm_start=False)
cv = cross_validation.ShuffleSplit(alldata.shape[0], n_iter=10,
test_size=0.2, random_state=0)
title = "Learning Curve (Random Forest)"
plot_learning_curve(forest, title, alldata, y, ylim=None, cv=cv, n_jobs=-1)
plt.show()
当我在IPython Notebook(Python 2.7)中运行此代码时,可以从cmd
看到以下错误。我从the following website获取了plot_learning_curve
函数。
答案 0 :(得分:0)
错误是由多处理引起的。在Windows上使用多处理与在Unix上使用不同。您需要将主代码放在if __name__ == '__main__':
子句下:
if __name__ == '__main__':
forest = ensemble.RandomForestClassifier(bootstrap=True, class_weight=None,
max_depth=None, max_features='auto', max_leaf_nodes=None,min_samples_leaf=1, min_samples_split=6,min_weight_fraction_leaf=0.0, n_estimators=300, n_jobs=-1,oob_score=False, random_state=111, verbose=0, warm_start=False)
cv = cross_validation.ShuffleSplit(alldata.shape[0], n_iter=10,
test_size=0.2, random_state=0)
title = "Learning Curve (Random Forest)"
plot_learning_curve(forest, title, alldata, y, ylim=None, cv=cv, n_jobs=-1)
plt.show()
答案 1 :(得分:0)
用你的代码我得到了这个
milenko@milenko-X58-USB3:~$ python k1.py
Traceback (most recent call last):
File "k1.py", line 68, in <module>
forest = ensemble.RandomForestClassifier(bootstrap=True, class_weight=None, max_depth=None, max_features='auto', max_leaf_nodes=None,min_samples_leaf=1, min_samples_split=6,min_weight_fraction_leaf=0.0, n_estimators=300, n_jobs=-1,oob_score=False, random_state=111, verbose=0, warm_start=False)
NameError: name 'ensemble' is not defined
我的python版
Python 2.7.11 :: Anaconda 2.4.1 (64-bit)
我认为你应该创建类集合。