我在python中实现了kmeans算法,代码如下。我测试代码使用一些简单的数据。如下所示,存储在名为data.txt的文件中
2 5
3 7
-1 -2
-3 -3
5 4
4 -4
3 -7
3.5 -9
我的问题是,在迭代期间,某些集群似乎变空,即(集群数量)< k,在我的分析之后,这似乎会出现,但在搜索网络后,我发现在kmeans算法中没有任何机构处理这个问题。
所以我不知道故障在哪里?是因为我的测试数据如此简单
import sys
import numpy as np
from math import sqrt
"""
useage: python mykmeans.py mydata.txt k
"""
GAP = 2
MIN_VAL = 1000000
def get_distance(point1, point2):
dis = sqrt(pow(point1[0] - point2[0], 2) + pow(point1[1] - point2[1], 2))
return dis
def cluster_dis(centroid, cluster):
dis = 0.0
for point in cluster:
dis += get_distance(centroid, point)
return dis
def update_centroids(centroids, cluster_id, cluster):
x, y = 0.0, 0.0
length = len(cluster)
if length == 0: # TODO: this is my question? do we need to examine this?
return
for item in cluster:
x += item[0]
y += item[1]
centroids[cluster_id] = (x / length, y / length)
def kmeans(data, k):
assert k <= len(data)
seed_ids = np.random.randint(0, len(data), k)
centroids = [data[idx] for idx in seed_ids]
clusters = [[] for _ in xrange(k)]
cluster_idx = [-1] * len(data)
pre_dis = 0
while True:
for point_id, point in enumerate(data):
min_distance, tmp_id = MIN_VAL, -1
for seed_id, seed in enumerate(centroids):
distance = get_distance(seed, point)
if distance < min_distance:
min_distance = distance
tmp_id = seed_id
if cluster_idx[point_id] != -1:
dex = clusters[cluster_idx[point_id]].index(point)
del clusters[cluster_idx[point_id]][dex]
clusters[tmp_id].append(point)
cluster_idx[point_id] = tmp_id
now_dis = 0.0
for cluster_id, cluster in enumerate(clusters):
now_dis += cluster_dis(centroids[cluster_id], cluster)
update_centroids(centroids, cluster_id, cluster)
delta_dis = now_dis - pre_dis
pre_dis = now_dis
if delta_dis < GAP:
break
print(centroids)
print(clusters)
return centroids, clusters
def get_data(file_name):
try:
fr = open(file_name)
lines = fr.read().splitlines()
except IOError, e:
pass
finally:
fr.close()
data = []
for line in lines:
tmp = line.split()
x, y = float(tmp[0]), float(tmp[1])
data.append([x, y])
return data
def main():
args = sys.argv[1:]
assert len(args) > 1
file_name, k = args[0], int(args[1])
data = get_data(file_name)
kmeans(data, k)
if __name__ == '__main__':
main()
答案 0 :(得分:5)
k-means可能诱导空簇。图中显示的是one example。我也复制了下面的数字,以防链接有一天到期。
下面的第一个数字显示了7个点的分布。最初选择3,5和6作为聚类中心。
下面的“+”表示第一次迭代后聚类中心的变化,相同的颜色表示相应的点位于同一个聚类中。
从下图中,您可以看到在2次迭代后,蓝色群集变空,并且确实有2个群集而不是初始化值3。
所以空簇可能是由于初始化和'不正确'的簇号。您可以在代码中尝试不同的k
并多次运行程序以观察聚类结果,使其更加健壮。