我向我提出了类似的问题,我找不到答案。
我的目标:我有生存数据。在考虑年龄和体重后,我想要生存数据的残差。
方法:
import statsmodels
from statsmodels import ols
species = ["sample1","sample2","sample3","sample4","sample5"]
Survival = [0.1,0.2,0.3,0.4,0.5]
Age = [1,2,3,4,5]
Weight = [1,3,5.5,7,10]
mymodel = ols.ols(Mortality,[Weight,Age],"Mortality",["Weight","Age"])
print mymodel
输出: 我理想的输出是一个有两列的表,一列是物种,另一列是我考虑到年龄和体重后的死亡率。
问题: 无论我做什么,我都找不到ols方法。我安装了statsmodel。当我打开一个python控制台,然后执行dir(statsmodels)时,我会得到一些选项:
['CacheWriteWarning', 'ConvergenceWarning', 'InvalidTestWarning', 'IterationLimitWarning', 'NoseWrapper', 'Tester', '__builtins__', '__doc__', '__docformat__', '__file__', '__name__', '__package__', '__path__', '__version__', 'compat', 'datasets', 'distributions', 'errstate', 'print_function', 'simplefilter', 'test', 'tools', 'version']
ols方法在哪里?
由于
答案 0 :(得分:0)
谢谢,这很有用。
以下是我使用的代码:
import numpy as np
import statsmodels.api as sm
import statsmodels.formula.api as smf
import sys
dat = np.loadtxt(sys.argv[1],dtype={"names":("Species","Weight","Mortality","Age"),"formats":("S20","f4","f4","f4")})
mymodel = smf.ols("Mortality~Weight+Age",data=dat).fit()
Residues = list(mymodel.resid_pearson)
for each_species,each_residue in zip(list(dat["Species"]),Residues):
print each_species + "\t" + str(each_residue)
所以我认为/希望这里发生的事情是我正在阅读表格,对数据进行多元回归,并打印物种名称和每个物种的残差(残差是死亡率的回归)体重和年龄)。谢谢。