我正在创建句子的单词表示。然后将句子中存在的单词与文件" vectors.txt"进行比较,以获得它们的嵌入向量。在获得句子中存在的每个单词的向量之后,我将对句子中单词的向量进行平均。这是我的代码:
import nltk
import numpy as np
from nltk import FreqDist
from nltk.corpus import brown
news = brown.words(categories='news')
news_sents = brown.sents(categories='news')
fdist = FreqDist(w.lower() for w in news)
vocabulary = [word for word, _ in fdist.most_common(10)]
num_sents = len(news_sents)
def averageEmbeddings(sentenceTokens, embeddingLookupTable):
listOfEmb=[]
for token in sentenceTokens:
embedding = embeddingLookupTable[token]
listOfEmb.append(embedding)
return sum(np.asarray(listOfEmb)) / float(len(listOfEmb))
embeddingVectors = {}
with open("D:\\Embedding\\vectors.txt") as file:
for line in file:
(key, *val) = line.split()
embeddingVectors[key] = val
for i in range(num_sents):
features = {}
for word in vocabulary:
features[word] = int(word in news_sents[i])
print(features)
print(list(features.values()))
sentenceTokens = []
for key, value in features.items():
if value == 1:
sentenceTokens.append(key)
sentenceTokens.remove(".")
print(sentenceTokens)
print(averageEmbeddings(sentenceTokens, embeddingVectors))
print(features.keys())
不确定原因,但我收到此错误:
TypeError Traceback (most recent call last)
<ipython-input-4-643ccd012438> in <module>()
39 sentenceTokens.remove(".")
40 print(sentenceTokens)
---> 41 print(averageEmbeddings(sentenceTokens, embeddingVectors))
42
43 print(features.keys())
<ipython-input-4-643ccd012438> in averageEmbeddings(sentenceTokens, embeddingLookupTable)
18 listOfEmb.append(embedding)
19
---> 20 return sum(np.asarray(listOfEmb)) / float(len(listOfEmb))
21
22 embeddingVectors = {}
TypeError: ufunc 'add' did not contain a loop with signature matching types dtype('<U9') dtype('<U9') dtype('<U9')
P.S。嵌入矢量看起来像:
the 0.011384 0.010512 -0.008450 -0.007628 0.000360 -0.010121 0.004674 -0.000076
of 0.002954 0.004546 0.005513 -0.004026 0.002296 -0.016979 -0.011469 -0.009159
and 0.004691 -0.012989 -0.003122 0.004786 -0.002907 0.000526 -0.006146 -0.003058
one 0.014722 -0.000810 0.003737 -0.001110 -0.011229 0.001577 -0.007403 -0.005355
in -0.001046 -0.008302 0.010973 0.009608 0.009494 -0.008253 0.001744 0.003263
使用np.sum后我收到此错误:
TypeError Traceback (most recent call last)
<ipython-input-13-8a7edbb9d946> in <module>()
40 sentenceTokens.remove(".")
41 print(sentenceTokens)
---> 42 print(averageEmbeddings(sentenceTokens, embeddingVectors))
43
44 print(features.keys())
<ipython-input-13-8a7edbb9d946> in averageEmbeddings(sentenceTokens, embeddingLookupTable)
18 listOfEmb.append(embedding)
19
---> 20 return np.sum(np.asarray(listOfEmb)) / float(len(listOfEmb))
21
22 embeddingVectors = {}
C:\Anaconda3\lib\site-packages\numpy\core\fromnumeric.py in sum(a, axis, dtype, out, keepdims)
1829 else:
1830 return _methods._sum(a, axis=axis, dtype=dtype,
-> 1831 out=out, keepdims=keepdims)
1832
1833
C:\Anaconda3\lib\site-packages\numpy\core\_methods.py in _sum(a, axis, dtype, out, keepdims)
30
31 def _sum(a, axis=None, dtype=None, out=None, keepdims=False):
---> 32 return umr_sum(a, axis, dtype, out, keepdims)
33
34 def _prod(a, axis=None, dtype=None, out=None, keepdims=False):
TypeError: cannot perform reduce with flexible type
答案 0 :(得分:44)
你有一个numpy字符串数组,而不是浮点数。这就是dtype('<U9')
的含义 - 一个带有最多9个字符的小端编码的unicode字符串。
尝试:
return sum(np.asarray(listOfEmb, dtype=float)) / float(len(listOfEmb))
但是,你根本不需要numpy。你真的可以做到:
return sum(float(embedding) for embedding in listOfEmb) / len(listOfEmb)
或者如果你真的开始使用numpy。
return np.asarray(listOfEmb, dtype=float).mean()