hclust()with cutree ...如何在单个hclust()

时间:2016-01-22 14:05:40

标签: r hclust dendextend

我使用cutree()将我的hclust()树聚类成几个组。现在我想要一个函数来将几个组成员hclust()作为hclust()... ALSO:

我将一棵树砍成168组,我想要168棵小树(...) 我的数据是1600 * 1600矩阵。

我的数据太大了,所以我给你举个例子

m<-matrix(1:1600,nrow=40)
#m<-as.matrix(m) // I know it isn't necessary here
m_dist<-as.dist(m,diag = FALSE )


m_hclust<-hclust(m_dist, method= "average")
plot(m_hclust)

groups<- cutree(m_hclust, k=18)

现在我要绘制18棵树......一组树。我已经尝试了很多..

1 个答案:

答案 0 :(得分:5)

我预先警告你,对于这么大的树,大多数解决方案可能运行起来有点慢。但这是一个解决方案(使用dendextend R包):

m<-matrix(1:1600,nrow=40)
#m<-as.matrix(m) // I know it isn't necessary here
m_dist<-as.dist(m,diag = FALSE )
m_hclust<-hclust(m_dist, method= "complete")
plot(m_hclust)
groups <- cutree(m_hclust, k=18)

# Get dendextend
install.packages.2 <- function (pkg) if (!require(pkg)) install.packages(pkg);
install.packages.2('dendextend')
install.packages.2('colorspace')
library(dendextend)
library(colorspace)

# I'll do this to just 4 clusters for illustrative purposes
k <- 4
cols <- rainbow_hcl(k)
dend <- as.dendrogram(m_hclust)
dend <- color_branches(dend, k = k)
plot(dend)
labels_dend <- labels(dend)
groups <- cutree(dend, k=4, order_clusters_as_data = FALSE)
dends <- list()
for(i in 1:k) {
    labels_to_keep <- labels_dend[i != groups]
    dends[[i]] <- prune(dend, labels_to_keep)
}

par(mfrow = c(2,2))
for(i in 1:k) { 
    plot(dends[[i]], 
        main = paste0("Tree number ", i))
}
# p.s.: because we have 3 root only trees, they don't have color (due to a "missing feature" in the way R plots root only dendrograms)

enter image description here

让我们在“更好”的树上再做一遍:

m_dist<-dist(mtcars,diag = FALSE )
m_hclust<-hclust(m_dist, method= "complete")
plot(m_hclust)

# Get dendextend
install.packages.2 <- function (pkg) if (!require(pkg)) install.packages(pkg);
install.packages.2('dendextend')
install.packages.2('colorspace')
library(dendextend)
library(colorspace)

# I'll do this to just 4 clusters for illustrative purposes
k <- 4
cols <- rainbow_hcl(k)
dend <- as.dendrogram(m_hclust)
dend <- color_branches(dend, k = k)
plot(dend)
labels_dend <- labels(dend)
groups <- cutree(dend, k=4, order_clusters_as_data = FALSE)
dends <- list()
for(i in 1:k) {
    labels_to_keep <- labels_dend[i != groups]
    dends[[i]] <- prune(dend, labels_to_keep)
}

par(mfrow = c(2,2))
for(i in 1:k) { 
    plot(dends[[i]], 
        main = paste0("Tree number ", i))
}
# p.s.: because we have 3 root only trees, they don't have color (due to a "missing feature" in the way R plots root only dendrograms)

enter image description here