我想使用openCl进行两个图像之间的像素值比较。一个图像应该由变换矩阵“变换”。
1)我遇到一个问题,即openCL版本的结果与CPU版本不同。 像素值差异在我的示例图像中(imageA:所有像素都是5,imagesB:所有像素都是6)总是一个,因此总共1000 * 1000像素应该是1000000。 CPU版本总是正确的,但openCL版本总是有点不经常,并且不时也不同(例如998895或998829)。
2)我的另一个问题是运行时,因为将两个比较像素的差异添加到结果变量需要很长时间。但我的感受说它可以通过另一种记忆布局来解决。
对我遇到的问题有什么想法吗? 也许使用二维工作集的方式会导致错误?
谢谢你,亲切的问候 亨德里克
这是内核: 基本上它获得了两个图像和700个转换矩阵(此时所有都代表了身份)。
__kernel void compliance(
__read_only image2d_t imageA,
__read_only image2d_t imageB,
__constant float *matrix,
__global int *result
)
{
for (int i = 0; i < 700; i++)
{
size_t x = get_global_id(0);
size_t y = get_global_id(1);
float t1 = matrix[0 + i * 6];
float t2 = matrix[1 + i * 6];
float t3 = matrix[2 + i * 6];
float t4 = matrix[3 + i * 6];
float t5 = matrix[4 + i * 6];
float t6 = matrix[5 + i * 6];
//calculate the other coords of the comparing pixel
int x_new = x * t1 + y * t2 + 1 * t3;
int y_new = x * t4 + y * t5 + 1 * t6;
int a = (read_imagei(imageA, (int2)(x, y)).x);
int b = (read_imagei(imageB, (int2)(x_new, y_new)).x);
int diff = b - a;
//add every different of two compared pixels to the result
result[i] += diff;
}
}
这是我的主机代码:
#define __CL_ENABLE_EXCEPTIONS
#include <CL/cl.hpp>
#include <utility>
#include <iostream>
#include <fstream>
#include <string>
#include <chrono>
#include <opencv2\core.hpp>
#include <opencv2\imgproc.hpp>
#include <opencv2\highgui.hpp>
using namespace std;
int main(int argc, char** argv) {
//700 transformation matrices
int numberMatrices = 700;
bool opencl = true;
//iamge width
int width = 1000;
//image height
int height = 1000;
//total number of pixels of one image
int size = width*height;
// Create two example images
const int LIST_SIZE = size;
int *imageA = new int[LIST_SIZE];
int *imageB = new int[LIST_SIZE];
for (int i = 0; i < LIST_SIZE; i++) {
//every pixel value of imageA is 5
imageA[i] = 5;
//every pixel value of imageA is 6
imageB[i] = 6;
}
//creation of n transformation matrices
const int MATRIX_SIZE = 6* numberMatrices;
float *indi = new float[MATRIX_SIZE];
//all the matrices are the same
for (int i = 0; i < numberMatrices; i++)
{
//identity matrix
indi[0 + i * 6] = 1;
indi[1 + i * 6] = 0;
indi[2 + i * 6] = 0;
indi[3 + i * 6] = 0;
indi[4 + i * 6] = 1;
indi[5 + i * 6] = 0;
}
//array to save the results of the comparison
const int RESULT_SIZE = numberMatrices;
int *result = new int[RESULT_SIZE];
if (opencl)
{
try {
// Get available platforms
vector<cl::Platform> platforms;
cl::Platform::get(&platforms);
std::cerr << "Platform number is: " << platforms.size() << std::endl;
std::string platformVendor;
platforms[0].getInfo((cl_platform_info)CL_PLATFORM_VENDOR, &platformVendor);
std::cerr << "Platform is by: " << platformVendor << "\n";
// Select the default platform and create a context using this platform and the GPU
cl_context_properties cps[3] = {
CL_CONTEXT_PLATFORM,
(cl_context_properties)(platforms[0])(),
0
};
cl::Context context(CL_DEVICE_TYPE_CPU, cps);
vector<cl::ImageFormat> format;
context.getSupportedImageFormats(CL_MEM_READ_ONLY, CL_MEM_OBJECT_IMAGE2D, &format);
/* for (int i = 0; i < format.size(); i++)
{
cout << "Channel Data Type: " << format.at(i).image_channel_data_type
<< " Channel order: " << format.at(i).image_channel_order << endl;
}*/
// Get a list of devices on this platform
vector<cl::Device> devices = context.getInfo<CL_CONTEXT_DEVICES>();
for (int i = 0; i < devices.size(); i++)
{
cout << "Device: " << devices.at(i).getInfo<CL_DEVICE_NAME>() << endl;
cout << "DOUBLE FP: " << devices.at(i).getInfo<CL_DEVICE_DOUBLE_FP_CONFIG>() << endl;
cout << "Image Max Height: " << devices.at(i).getInfo<CL_DEVICE_IMAGE2D_MAX_HEIGHT>() << endl;
cout << "Image Support: " << devices.at(i).getInfo<CL_DEVICE_IMAGE_SUPPORT>() << endl;
cout << "Local Memory Size: " << devices.at(i).getInfo<CL_DEVICE_LOCAL_MEM_SIZE>() << endl;
cout << "Clock Frequency: " << devices.at(i).getInfo<CL_DEVICE_MAX_CLOCK_FREQUENCY>() << endl;
cout << "CUs: " << devices.at(i).getInfo<CL_DEVICE_MAX_COMPUTE_UNITS>() << endl;
cout << "Driver: " << devices.at(i).getInfo<CL_DRIVER_VERSION>() << endl;
cout << "Version: " << devices.at(i).getInfo<CL_DEVICE_VERSION>() << endl;
cout << "Work Group: " << devices.at(i).getInfo<CL_DEVICE_MAX_WORK_GROUP_SIZE>() << endl;
cout << "Items: " << devices.at(i).getInfo<CL_DEVICE_MAX_WORK_ITEM_DIMENSIONS>();
cout << endl;
}
//Create opencl image
cl::Image2D clImage_A = cl::Image2D(context, CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR, cl::ImageFormat(CL_RGBA, CL_UNSIGNED_INT8), (size_t)width, (size_t)height, 0, imageA);
cl::Image2D clImage_B = cl::Image2D(context, CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR, cl::ImageFormat(CL_RGBA, CL_UNSIGNED_INT8), (size_t)width, (size_t)height, 0, imageB);
// Create a command queue and use the first device
cl::CommandQueue queue = cl::CommandQueue(context, devices[0]);
// Read kernel source file
std::ifstream sourceFile("difference.cl");
std::string sourceCode(
std::istreambuf_iterator<char>(sourceFile),
(std::istreambuf_iterator<char>()));
cl::Program::Sources source(1, std::make_pair(sourceCode.c_str(), sourceCode.length() + 1));
// Make program of the source code in the context
cl::Program program = cl::Program(context, source);
// Build program for these specific devices
program.build(devices);
// Make kernel
cl::Kernel kernel(program, "compliance");
// Create memory buffers
cl::Buffer buffer_matrix = cl::Buffer(context, CL_MEM_READ_ONLY, LIST_SIZE * sizeof(float));
cl::Buffer buffer_result = cl::Buffer(context, CL_MEM_READ_WRITE, RESULT_SIZE * sizeof(int));
// Copy list of results to the memory buffers
queue.enqueueWriteBuffer(buffer_matrix, CL_TRUE, 0, MATRIX_SIZE * sizeof(float), indi);
// Set arguments to kernel
kernel.setArg(0, clImage_A);
kernel.setArg(1, clImage_B);
kernel.setArg(2, buffer_matrix);
kernel.setArg(3, buffer_result);
cl::Event event;
std::cout << "Start OpenCL processing.." << endl;
chrono::high_resolution_clock::time_point t1 = chrono::high_resolution_clock::now();
// Run the kernel n-times on specific ND range
for (int i = 0; i < 1; i++)
{
queue.enqueueNDRangeKernel(
kernel,
cl::NullRange,
cl::NDRange((size_t)width, (size_t)height),
cl::NDRange(1, 1),
NULL,
&event);
cout << i << " ";
event.wait();
}
chrono::high_resolution_clock::time_point t2 = chrono::high_resolution_clock::now();
auto duration_opencl = std::chrono::duration_cast<std::chrono::milliseconds>(t2 - t1).count();
std::cout << "OpenCL processing done.." << endl;
std::cout << "Start CPU Processing.." << endl;
// Read buffer_result into result
queue.enqueueReadBuffer(buffer_result, CL_TRUE, 0, RESULT_SIZE * sizeof(int), result);
//cpu version to calculate the difference between the two arryays
t1 = chrono::high_resolution_clock::now();
int different = 0;
int x_new;
int x;
for (int i = 0; i < numberMatrices; i++)
{
different = 0;
for (int n = 0; n < LIST_SIZE; n++)
{
x = imageA[n];
x_new = x;;
int a = imageA[x];
int b = imageB[x_new];
int diff = imageB[x_new] - imageA[x];
different += diff;
}
}
t2 = chrono::high_resolution_clock::now();
auto duration_cpu = std::chrono::duration_cast<std::chrono::milliseconds>(t2 - t1).count();
std::cout << "CPU processing done.." << endl;
//output of the results
std::cout << "opencl: diff " << result[0] << endl;
std::cout << "Runtime opencl: " << duration_opencl << endl;
std::cout << "CPU: diff " << different << endl;
std::cout << "Runtime CPU: " << duration_cpu << endl;
double times = (double)duration_cpu / (double)duration_opencl;
std::cout << "OpenCL is " << times << " times faster!!!" << endl;
char c;
std::cin >> c;
}
catch (cl::Error error) {
std::cout << error.what() << "(" << error.err() << ")" << std::endl;
char c;
std::cin >> c;
}
}
return 0;
}
答案 0 :(得分:0)
你认为你的OpenCL代码result[i] += diff;
中你的程序在每个工作项中同时执行的情况下,你认为你有竞争条件吗?所以也许这可能是一个问题。
答案 1 :(得分:0)
浮点算术在平台上有所不同。您很可能会看到OpenCL
编译器执行的特定于硬件的MAD优化的影响。据我所知,在这种情况下,使用-cl-opt-disable
禁用优化将无济于事。