我想在我的TensorFlow图中为几个权重矩阵添加最大范数约束,ala Torch的{{3}}方法。
如果任何神经元的权重矩阵的L2范数超过max_norm
,我想缩减其权重,使其L2范数正好为max_norm
。
使用TensorFlow表达此信息的最佳方式是什么?
答案 0 :(得分:4)
这是一个可能的实现:
import tensorflow as tf
def maxnorm_regularizer(threshold, axes=1, name="maxnorm", collection="maxnorm"):
def maxnorm(weights):
clipped = tf.clip_by_norm(weights, clip_norm=threshold, axes=axes)
clip_weights = tf.assign(weights, clipped, name=name)
tf.add_to_collection(collection, clip_weights)
return None # there is no regularization loss term
return maxnorm
以下是您将如何使用它:
from tensorflow.contrib.layers import fully_connected
from tensorflow.contrib.framework import arg_scope
with arg_scope(
[fully_connected],
weights_regularizer=max_norm_regularizer(1.5)):
hidden1 = fully_connected(X, 200, scope="hidden1")
hidden2 = fully_connected(hidden1, 100, scope="hidden2")
outputs = fully_connected(hidden2, 5, activation_fn=None, scope="outs")
max_norm_ops = tf.get_collection("max_norm")
[...]
with tf.Session() as sess:
sess.run(init)
for epoch in range(n_epochs):
for X_batch, y_batch in load_next_batch():
sess.run(training_op, feed_dict={X: X_batch, y: y_batch})
sess.run(max_norm_ops)
这创建了一个3层神经网络,并在每一层(阈值为1.5)进行最大范数正则化训练。我只是尝试过,似乎工作。希望这可以帮助!欢迎提出改进建议。 :)
备注强>
此代码基于tf.clip_by_norm()
:
>>> x = tf.constant([0., 0., 3., 4., 30., 40., 300., 400.], shape=(4, 2))
>>> print(x.eval())
[[ 0. 0.]
[ 3. 4.]
[ 30. 40.]
[ 300. 400.]]
>>> clip_rows = tf.clip_by_norm(x, clip_norm=10, axes=1)
>>> print(clip_rows.eval())
[[ 0. 0. ]
[ 3. 4. ]
[ 6. 8. ] # clipped!
[ 6.00000048 8. ]] # clipped!
如果需要,您还可以剪辑列:
>>> clip_cols = tf.clip_by_norm(x, clip_norm=350, axes=0)
>>> print(clip_cols.eval())
[[ 0. 0. ]
[ 3. 3.48245788]
[ 30. 34.82457733]
[ 300. 348.24578857]]
# clipped!
答案 1 :(得分:2)
使用Rafał的建议和TensorFlow的clip_by_norm
def renorm(x, axis, max_norm):
'''Renormalizes the sub-tensors along axis such that they do not exceed norm max_norm.'''
# This elaborate dance avoids empty slices, which TF dislikes.
rank = tf.rank(x)
bigrange = tf.range(-1, rank + 1)
dims = tf.slice(
tf.concat(0, [tf.slice(bigrange, [0], [1 + axis]),
tf.slice(bigrange, [axis + 2], [-1])]),
[1], rank - [1])
# Determine which columns need to be renormalized.
l2norm_inv = tf.rsqrt(tf.reduce_sum(x * x, dims, keep_dims=True))
scale = max_norm * tf.minimum(l2norm_inv, tf.constant(1.0 / max_norm))
# Broadcast the scalings
return tf.mul(scale, x)
,这是我想出的:
> x = tf.constant([0., 0., 3., 4., 30., 40., 300., 400.], shape=(4, 2))
> print x.eval()
[[ 0. 0.] # rows have norms of 0, 5, 50, 500
[ 3. 4.] # cols have norms of ~302, ~402
[ 30. 40.]
[ 300. 400.]]
> print renorm(x, 0, 10).eval()
[[ 0. 0. ] # unaffected
[ 3. 4. ] # unaffected
[ 5.99999952 7.99999952] # rescaled
[ 6.00000048 8.00000095]] # rescaled
> print renorm(x, 1, 350).eval()
[[ 0. 0. ] # col 0 is unaffected
[ 3. 3.48245788] # col 1 is rescaled
[ 30. 34.82457733]
[ 300. 348.24578857]]
它似乎具有二维矩阵所需的行为,应该如此 概括为张量:
Select Avg(Rating), Author
From BooksDB
Group by Author
Order by Avg(Rating) DESC
Select Avg(Rating), Title
From BooksDB
Group by Title
Order by Avg(Rating) DESC
答案 2 :(得分:1)
查看clip_by_norm函数,它正是这样做的。它需要一个张量作为输入并返回按比例缩小的张量。