我写了以下程序。 我没有使用TotalOrderPartitioner就运行它并且运行良好。所以我认为Mapper或Reducer类没有任何问题。
但是,当我包含TotalOrderPartitioner的代码,即编写分区文件然后将其放入DistributedCache时,我收到以下错误:真的很无知如何去做。
[train @ sandbox TOTALORDERPARTITIONER] $ hadoop jar totalorderpart.jar average.AverageJob县totpart
//县是输入目录,totpart是输出目录
16/01/18 04:14:00 INFO input.FileInputFormat:指向的总输入路径 过程:4 16/01/18 04:14:00 INFO partition.InputSampler:使用6 样本16/01/18 04:14:00 INFO zlib.ZlibFactory:成功加载& 初始化native-zlib库16/01/18 04:14:00 INFO compress.CodecPool:得到了全新的压缩器[.deflate] java.io.IOException:错误的密钥类: org.apache.hadoop.io.LongWritable不是类 org.apache.hadoop.io.Text at org.apache.hadoop.io.SequenceFile $ RecordCompressWriter.append(SequenceFile.java:1380) 在 org.apache.hadoop.mapreduce.lib.partition.InputSampler.writePartitionFile(InputSampler.java:340) 平均.AverageJob.run(AverageJob.java:132)at org.apache.hadoop.util.ToolRunner.run(ToolRunner.java:70)at average.AverageJob.main(AverageJob.java:146)at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:39) 在 sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:25) 在java.lang.reflect.Method.invoke(Method.java:597)at org.apache.hadoop.util.RunJar.main(RunJar.java:212)
我的代码
package average;
import java.io.IOException;
import java.net.URI;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.conf.Configured;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.util.StringUtils;
import org.apache.hadoop.util.Tool;
import org.apache.hadoop.util.ToolRunner;
import org.apache.hadoop.io.*;
import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;
import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.partition.InputSampler;
import org.apache.hadoop.mapreduce.lib.partition.TotalOrderPartitioner;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
public class AverageJob extends Configured implements Tool {
public enum Counters {MAP, COMINE, REDUCE};
public static class AverageMapper extends Mapper<LongWritable, Text, Text, Text> {
private Text mapOutputKey = new Text();
private Text mapOutputValue = new Text();
@Override
protected void map(LongWritable key, Text value, Context context)
throws IOException, InterruptedException {
String[] words = StringUtils.split(value.toString(), '\\', ',');
mapOutputKey.set(words[1].trim());
StringBuilder moValue = new StringBuilder();
moValue.append(words[9].trim()).append(",1");
mapOutputValue.set(moValue.toString());
context.write(mapOutputKey, mapOutputValue);
context.getCounter(Counters.MAP).increment(1);
}
}
public static class AverageCombiner extends Reducer<Text, Text, Text, Text> {
private Text combinerOutputValue = new Text();
@Override
protected void reduce(Text key, Iterable<Text> values, Context context)
throws IOException, InterruptedException {
int count=0;
long sum=0;
for(Text value: values)
{
String[] strValues = StringUtils.split(value.toString(), ',');
sum+= Long.parseLong(strValues[0]);
count+= Integer.parseInt(strValues[1]);
}
combinerOutputValue.set(sum + "," + count);
context.write(key, combinerOutputValue);
context.getCounter(Counters.COMINE).increment(1);
}
}
public static class AverageReducer extends Reducer<Text, Text, Text, DoubleWritable> {
private DoubleWritable reduceOutputKey = new DoubleWritable();
@Override
protected void reduce(Text key, Iterable<Text> values, Context context)
throws IOException, InterruptedException {
int count=0;
double sum=0;
for(Text value: values)
{
String[] strValues = StringUtils.split(value.toString(), ',');
sum+= Double.parseDouble(strValues[0]);
count+= Integer.parseInt(strValues[1]);
}
reduceOutputKey.set(sum/count);
context.write(key, reduceOutputKey);
context.getCounter(Counters.REDUCE).increment(1);
}
}
@Override
public int run(String[] args) throws Exception {
Configuration conf = getConf();
Job job = Job.getInstance(conf);
job.setJarByClass(getClass());
Path in = new Path(args[0]);
Path out = new Path(args[1]);
FileInputFormat.setInputPaths(job, in);
FileOutputFormat.setOutputPath(job, out);
job.setInputFormatClass(TextInputFormat.class);
job.setOutputFormatClass(TextOutputFormat.class);
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(Text.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(DoubleWritable.class);
job.setMapperClass(AverageMapper.class);
job.setCombinerClass(AverageCombiner.class);
job.setPartitionerClass(TotalOrderPartitioner.class);
job.setReducerClass(AverageReducer.class);
job.setNumReduceTasks(6);
InputSampler.Sampler<Text, Text> sampler = new InputSampler.RandomSampler<Text, Text>(0.2, 6, 5);
InputSampler.writePartitionFile(job, sampler);
String partitionFile = TotalOrderPartitioner.getPartitionFile(conf);
URI partitionUri = new URI(partitionFile + "#" + TotalOrderPartitioner.DEFAULT_PATH);
job.addCacheFile(partitionUri);
return job.waitForCompletion(true)?0:1;
}
public static void main(String[] args) {
int result=0;
try
{
result = ToolRunner.run(new Configuration(), new AverageJob(), args);
System.exit(result);
}
catch (Exception e)
{
e.printStackTrace();
}
}
}
答案 0 :(得分:1)
TotalOrderPartitioner不会在Mapper的输出上运行其采样,而是在输入数据集上运行。您的输入格式具有LongWritable作为键,Text作为值。相反,您试图调用RandomSampler声称您的格式将Text作为键,Text作为值。这是InputSampler在运行时找到的不匹配,因此消息
错误的密钥类:org.apache.hadoop.io.LongWritable不是类org.apache.hadoop.io.Text
意思是它试图找到Text作为键(基于你的参数化),但它找到了LongWritable。