TotalOrderPartitioner提供错误的密钥类错误

时间:2015-05-18 09:09:51

标签: hadoop hadoop-partitioning

我正在尝试使用TotalOrderPartitioner hadoop。这样做我收到以下错误。错误说明 - “错误的密钥类”

驱动程序代码 -

import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.input.SequenceFileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.mapreduce.lib.partition.InputSampler;
import org.apache.hadoop.mapreduce.lib.partition.TotalOrderPartitioner;


public class WordCountJobTotalSort {

    public static void main (String args[]) throws Exception
    {
        if (args.length < 2 ) 
        {
            System.out.println("Plz provide I/p and O/p directory ");
            System.exit(-1);
        }

        Job job = new Job();

        job.setJarByClass(WordCountJobTotalSort.class);
        job.setJobName("WordCountJobTotalSort");            
        FileInputFormat.setInputPaths(job, new Path(args[0]));
        FileOutputFormat.setOutputPath(job, new Path(args[1]));
        job.setInputFormatClass(SequenceFileInputFormat.class);
        job.setMapperClass(WordMapper.class);
        job.setPartitionerClass(TotalOrderPartitioner.class);
        job.setReducerClass(WordReducer.class);
        job.setMapOutputKeyClass(Text.class);
        job.setMapOutputValueClass(IntWritable.class);
        job.setOutputKeyClass(Text.class);
        job.setOutputValueClass(IntWritable.class);
        job.setNumReduceTasks(2);

        TotalOrderPartitioner.setPartitionFile(job.getConfiguration(), new Path("/tmp/partition.lst"));

        InputSampler.writePartitionFile(job, new InputSampler.RandomSampler<IntWritable, Text>(1,2,2));

        System.exit(job.waitForCompletion(true) ? 0 : 1);
    }
}

映射器代码 -

import java.io.IOException;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;


public class WordMapper extends Mapper <LongWritable,Text,Text, IntWritable >  
{

    public void map(IntWritable mkey, Text value,Context context)
            throws IOException, InterruptedException {

        String s = value.toString();

        for (String word : s.split(" "))
        {
            if (word.length() > 0 ){
                context.write(new Text(word), new IntWritable(1));

            }
        }
    }
}

Reducer COde -

import java.io.IOException;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;


public class WordReducer extends  Reducer <Text, IntWritable, Text, IntWritable> {

    public void reduce(Text rkey, Iterable<IntWritable> values ,Context context )
            throws IOException, InterruptedException {

        int count=0;

        for (IntWritable value : values){

            count = count + value.get();
        }

        context.write(rkey, new IntWritable(count));    
    }
}

错误 -

[cloudera@localhost workspace]$ hadoop jar WordCountJobTotalSort.jar WordCountJobTotalSort file_seq/part-m-00000 file_out
15/05/18 00:45:13 INFO input.FileInputFormat: Total input paths to process : 1
15/05/18 00:45:13 INFO partition.InputSampler: Using 2 samples
15/05/18 00:45:13 INFO zlib.ZlibFactory: Successfully loaded & initialized native-zlib library
15/05/18 00:45:13 INFO compress.CodecPool: Got brand-new compressor [.deflate]
Exception in thread "main" java.io.IOException: wrong key class: org.apache.hadoop.io.LongWritable is not class org.apache.hadoop.io.Text
    at org.apache.hadoop.io.SequenceFile$RecordCompressWriter.append(SequenceFile.java:1340)
    at org.apache.hadoop.mapreduce.lib.partition.InputSampler.writePartitionFile(InputSampler.java:336)
    at WordCountJobTotalSort.main(WordCountJobTotalSort.java:47)
    at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
    at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:39)
    at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:25)
    at java.lang.reflect.Method.invoke(Method.java:597)
    at org.apache.hadoop.util.RunJar.main(RunJar.java:208)

输入文件 -

[cloudera @ localhost workspace] $ hadoop fs -text file_seq / part-m-00000

0你好你好

12如何

20是

26你的

36个工作

3 个答案:

答案 0 :(得分:2)

InputSampler在Map阶段(在shuffle和reduce之前)执行采样,并且通过Mapper的输入KEY完成采样。我们需要确保映射器的输入和输出KEY是相同的;否则MR框架找不到合适的存储桶来将输出Key,Value对放在采样空间中。

在这种情况下,输入KEY是LongWritable,因此InputSampler将基于所有LongWritable KEY的子集创建分区。但是输出KEY是Text,因此MR框架将无法在分区中找到合适的存储桶。

我们可以通过引入准备阶段来解决这个问题。

答案 1 :(得分:0)

在我的情况下,我得到了同样错误的键类错误,因为我正在使用自定义可写的组合器。当我对合并器发表评论时效果很好。

答案 2 :(得分:-1)

评论这两行并执行hadoop作业

job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(IntWritable.class);

好的,如果它不起作用,那么在评论这两行之后你必须设置 输入和输出格式类

job.setInputFormatClass(SequenceFileInputFormat.class);
job.setOutputFormatClass(SequenceFileOutputFormat.class);