我有一个对数正态分布式设置样本,并希望对它进行拟合。然后我想将样本的直方图和拟合的PDF绘制成一个图,我想用直方图的原始缩放。
我的问题:如何直接缩放PDF以使其在直方图中可见?
以下是代码:
import numpy as np
import scipy.stats
# generate log-normal distributed set of samples
samples = np.random.lognormal( mean=1., sigma=.4, size=10000 )
# make a fit to the samples and generate the resulting PDF
shape, loc, scale = scipy.stats.lognorm.fit( samples, floc=0 )
x_fit = np.linspace( samples.min(), samples.max(), 100 )
samples_fit = scipy.stats.lognorm.pdf( x_fit, shape, loc=loc, scale=scale )
我的问题是,如果有一个参数可以轻松地将PDF缩放到直方图(我还没找到,但这并不意味着太多......),这样PDF就可以在中间看到情节?
答案 0 :(得分:5)
您要求的是预期直方图的图表。
假设[a,b]是直方图的x个区间之一。随机 大小为n的样本,间隔中预期的样本数
(cdf(b) - cdf(a))*n
其中cdf(x)是累积分布函数。要绘制预期的直方图,您将计算每个仓的值。
下面的脚本显示了绘制预期直方图的一种方法 在matplotlib直方图之上。它生成了这个图:
import numpy as np
import scipy.stats
import matplotlib.pyplot as plt
# Generate log-normal distributed set of samples
np.random.seed(1234)
samples = np.random.lognormal(mean=1., sigma=.4, size=10000)
# Make a fit to the samples.
shape, loc, scale = scipy.stats.lognorm.fit(samples, floc=0)
# Create the histogram plot using matplotlib. The first two values in
# the tuple returned by hist are the number of samples in each bin and
# the values of the histogram's bin edges. counts has length num_bins,
# and edges has length num_bins + 1.
num_bins = 50
clr = '#FFE090'
counts, edges, patches = plt.hist(samples, bins=num_bins, color=clr, label='Sample histogram')
# Create an array of length num_bins containing the center of each bin.
centers = 0.5*(edges[:-1] + edges[1:])
# Compute the CDF at the edges. Then prob, the array of differences,
# is the probability of a sample being in the corresponding bin.
cdf = scipy.stats.lognorm.cdf(edges, shape, loc=loc, scale=scale)
prob = np.diff(cdf)
plt.plot(centers, samples.size*prob, 'k-', linewidth=2, label='Expected histogram')
# prob can also be approximated using the PDF at the centers multiplied
# by the width of the bin:
# p = scipy.stats.lognorm.pdf(centers, shape, loc=loc, scale=scale)
# prob = p*(edges[1] - edges[0])
# plt.plot(centers, samples.size*prob, 'r')
plt.legend()
plt.show()
注意:由于PDF是CDF的衍生物,您可以将cdf(b) - cdf(a)的近似值写为
cdf(b) - cdf(a) = pdf(m)*(b - a)
其中m是,例如,区间[a,b]的中点。然后,您提出的确切问题的答案是通过将PDF乘以样本大小和直方图区域宽度来缩放PDF。脚本中有一些注释掉的代码,显示如何使用缩放的PDF绘制预期的直方图。但由于CDF也可用于对数正态分布,因此您也可以使用它。