我有一个pandas数据帧df
,如:
A,B,C
1,1,1
0.8,0.6,0.9
0.7,0.5,0.8
0.2,0.4,0.1
0.1,0,0
其中三列已排序值[0,1]。我试图在三个系列中绘制线性回归。到目前为止,我能够使用scipy.stats
如下:
from scipy import stats
xi = np.arange(len(df))
slope, intercept, r_value, p_value, std_err = stats.linregress(xi,df['A'])
line1 = intercept + slope*xi
slope, intercept, r_value, p_value, std_err = stats.linregress(xi,df['B'])
line2 = intercept + slope*xi
slope, intercept, r_value, p_value, std_err = stats.linregress(xi,df['C'])
line3 = intercept + slope*xi
plt.plot(line1,'r-')
plt.plot(line2,'b-')
plt.plot(line3,'g-')
plt.plot(xi,df['A'],'ro')
plt.plot(xi,df['B'],'bo')
plt.plot(xi,df['C'],'go')
获得以下情节:
是否有可能获得一个单一的线性回归,总结scipy.stats
中的三个单线性回归?
答案 0 :(得分:2)
也许是这样的:
x = pd.np.tile(xi, 3)
y = pd.np.r_[df['A'], df['B'], df['C']]
slope, intercept, r_value, p_value, std_err = stats.linregress(x, y)
line4 = intercept + slope * xi
plt.plot(line4,'k-')