我使用PostgreSQL中的pg_trgm
模块来计算使用trigrams的两个字符串之间的相似性。特别是我使用:
similarity(text, text)
返回的数字返回一个数字,表示两个参数的相似程度(介于0和1之间)。
如何在Google BigQuery上执行相似度功能(或等效功能)?
答案 0 :(得分:3)
请尝试以下操作。至少作为增强蓝图
SELECT text1, text2, similarity FROM
JS(
// input table
(
SELECT * FROM
(SELECT 'mikhail' AS text1, 'mikhail' AS text2),
(SELECT 'mikhail' AS text1, 'mike' AS text2),
(SELECT 'mikhail' AS text1, 'michael' AS text2),
(SELECT 'mikhail' AS text1, 'javier' AS text2),
(SELECT 'mikhail' AS text1, 'thomas' AS text2)
) ,
// input columns
text1, text2,
// output schema
"[{name: 'text1', type:'string'},
{name: 'text2', type:'string'},
{name: 'similarity', type:'float'}]
",
// function
"function(r, emit) {
var _extend = function(dst) {
var sources = Array.prototype.slice.call(arguments, 1);
for (var i=0; i<sources.length; ++i) {
var src = sources[i];
for (var p in src) {
if (src.hasOwnProperty(p)) dst[p] = src[p];
}
}
return dst;
};
var Levenshtein = {
/**
* Calculate levenshtein distance of the two strings.
*
* @param str1 String the first string.
* @param str2 String the second string.
* @return Integer the levenshtein distance (0 and above).
*/
get: function(str1, str2) {
// base cases
if (str1 === str2) return 0;
if (str1.length === 0) return str2.length;
if (str2.length === 0) return str1.length;
// two rows
var prevRow = new Array(str2.length + 1),
curCol, nextCol, i, j, tmp;
// initialise previous row
for (i=0; i<prevRow.length; ++i) {
prevRow[i] = i;
}
// calculate current row distance from previous row
for (i=0; i<str1.length; ++i) {
nextCol = i + 1;
for (j=0; j<str2.length; ++j) {
curCol = nextCol;
// substution
nextCol = prevRow[j] + ( (str1.charAt(i) === str2.charAt(j)) ? 0 : 1 );
// insertion
tmp = curCol + 1;
if (nextCol > tmp) {
nextCol = tmp;
}
// deletion
tmp = prevRow[j + 1] + 1;
if (nextCol > tmp) {
nextCol = tmp;
}
// copy current col value into previous (in preparation for next iteration)
prevRow[j] = curCol;
}
// copy last col value into previous (in preparation for next iteration)
prevRow[j] = nextCol;
}
return nextCol;
}
};
var the_text1;
try {
the_text1 = decodeURI(r.text1).toLowerCase();
} catch (ex) {
the_text1 = r.text1.toLowerCase();
}
try {
the_text2 = decodeURI(r.text2).toLowerCase();
} catch (ex) {
the_text2 = r.text2.toLowerCase();
}
emit({text1: the_text1, text2: the_text2,
similarity: 1 - Levenshtein.get(the_text1, the_text2) / the_text1.length});
}"
)
ORDER BY similarity DESC
这是@thomaspark
基于https://storage.googleapis.com/thomaspark-sandbox/udf-examples/pataky.js的轻微修改答案 1 :(得分:0)
我did it是这样的:
CREATE TEMP FUNCTION trigram_similarity(a STRING, b STRING) AS (
(
WITH a_trigrams AS (
SELECT
DISTINCT tri_a
FROM
unnest(ML.NGRAMS(SPLIT(LOWER(a), ''), [3,3])) AS tri_a
),
b_trigrams AS (
SELECT
DISTINCT tri_b
FROM
unnest(ML.NGRAMS(SPLIT(LOWER(b), ''), [3,3])) AS tri_b
)
SELECT
COUNTIF(tri_b IS NOT NULL) / COUNT(*)
FROM
a_trigrams
LEFT JOIN b_trigrams ON tri_a = tri_b
)
);
这里是Postgres's pg_trgm的比较:
select trigram_similarity('saemus', 'seamus');
-- 0.25 vs. pg_trgm 0.272727
select trigram_similarity('shamus', 'seamus');
-- 0.5 vs. pg_trgm 0.4