我将图像编码为某些.wav文件的光谱时出现问题,因此结果与此类似:http://www.bastwood.com/projects/aphex_face/aphex.png
我刚开始编程,所以我正在寻找易于理解的解决方案。
有人可以帮忙吗?
答案 0 :(得分:2)
为了将图像编码为波谱,您可以使用以下从GitHub下载的程序。 Spectrogram python代码将图像转换为音频波形文件。
#!/usr/bin/python
import numpy as np
import matplotlib.image as mpimg
import wave
from array import array
def make_wav(image_filename):
""" Make a WAV file having a spectrogram resembling an image """
# Load image
image = mpimg.imread(image_filename)
image = np.sum(image, axis = 2).T[:, ::-1]
image = image**3 # ???
w, h = image.shape
# Fourier transform, normalize, remove DC bias
data = np.fft.irfft(image, h*2, axis=1).reshape((w*h*2))
data -= np.average(data)
data *= (2**15-1.)/np.amax(data)
data = array("h", np.int_(data)).tostring()
# Write to disk
output_file = wave.open(image_filename+".wav", "w")
output_file.setparams((1, 2, 44100, 0, "NONE", "not compressed"))
output_file.writeframes(data)
output_file.close()
print "Wrote %s.wav" % image_filename
if __name__ == "__main__":
my_image = "spectrogram.png"
make_wav(my_image)
为了将波形文件显示为频谱图,您有两种选择。您可以下载sox并运行
,具体取决于您的平台 sox <yourImage>.jpg.wav -n spectrogram
SOX,声音交换的缩写,然后将图像的音频波形文件转换为图像频谱图。
或者如果您不想下载SOX,可以使用以下程序创建图像音频波形文件的频谱图。
#!/usr/bin/env python
#coding: utf-8
""" This work is licensed under a Creative Commons Attribution 3.0 Unported License.
Frank Zalkow, 2012-2013 """
import numpy as np
from matplotlib import pyplot as plt
import scipy.io.wavfile as wav
from numpy.lib import stride_tricks
""" short time fourier transform of audio signal """
def stft(sig, frameSize, overlapFac=0.5, window=np.hanning):
win = window(frameSize)
hopSize = int(frameSize - np.floor(overlapFac * frameSize))
# zeros at beginning (thus center of 1st window should be for sample nr. 0)
samples = np.append(np.zeros(np.floor(frameSize/2.0)), sig)
# cols for windowing
cols = np.ceil( (len(samples) - frameSize) / float(hopSize)) + 1
# zeros at end (thus samples can be fully covered by frames)
samples = np.append(samples, np.zeros(frameSize))
frames = stride_tricks.as_strided(samples, shape=(cols, frameSize), strides=(samples.strides[0]*hopSize, samples.strides[0])).copy()
frames *= win
return np.fft.rfft(frames)
""" scale frequency axis logarithmically """
def logscale_spec(spec, sr=44100, factor=20.):
timebins, freqbins = np.shape(spec)
scale = np.linspace(0, 1, freqbins) ** factor
scale *= (freqbins-1)/max(scale)
scale = np.unique(np.round(scale))
# create spectrogram with new freq bins
newspec = np.complex128(np.zeros([timebins, len(scale)]))
for i in range(0, len(scale)):
if i == len(scale)-1:
newspec[:,i] = np.sum(spec[:,scale[i]:], axis=1)
else:
newspec[:,i] = np.sum(spec[:,scale[i]:scale[i+1]], axis=1)
# list center freq of bins
allfreqs = np.abs(np.fft.fftfreq(freqbins*2, 1./sr)[:freqbins+1])
freqs = []
for i in range(0, len(scale)):
if i == len(scale)-1:
freqs += [np.mean(allfreqs[scale[i]:])]
else:
freqs += [np.mean(allfreqs[scale[i]:scale[i+1]])]
return newspec, freqs
""" plot spectrogram"""
def plotstft(audiopath, binsize=2**10, plotpath=None, colormap="jet"):
samplerate, samples = wav.read(audiopath)
s = stft(samples, binsize)
sshow, freq = logscale_spec(s, factor=1.0, sr=samplerate)
ims = 20.*np.log10(np.abs(sshow)/10e-6) # amplitude to decibel
timebins, freqbins = np.shape(ims)
plt.figure(figsize=(15, 7.5))
plt.imshow(np.transpose(ims), origin="lower", aspect="auto", cmap=colormap, interpolation="none")
plt.colorbar()
plt.xlabel("time (s)")
plt.ylabel("frequency (hz)")
plt.xlim([0, timebins-1])
plt.ylim([0, freqbins])
xlocs = np.float32(np.linspace(0, timebins-1, 5))
plt.xticks(xlocs, ["%.02f" % l for l in ((xlocs*len(samples)/timebins)+(0.5*binsize))/samplerate])
ylocs = np.int16(np.round(np.linspace(0, freqbins-1, 10)))
plt.yticks(ylocs, ["%.02f" % freq[i] for i in ylocs])
if plotpath:
plt.savefig(plotpath, bbox_inches="tight")
else:
plt.show()
plt.clf()
plotstft("spectrogram.png.wav")
#