我正在尝试获取时间信号的三倍频程频谱。
时间信号是旋转转子噪声的声压,它是谐波。它的基本频率是ff = n * N_b
,因此,所有频率都应该是ff的倍数。
使用fft可以得到预期的结果: 基本频率的倍数是频谱中的相关频率。
要获得第三个八度音阶频谱,我想使用python声学,但是函数bandpass_third_octaves
的结果不是我期望的。
我希望从fft频谱中获得的峰值可以简单地移至具有调整幅度的三倍频程中心频率。至少那是我想要得到的。
我认为我误解了bandpass_third_octaves
的输出。它的输出是一个包含第三个八度音阶频率的元组和一个数组列表,据我所知,这些数组应该包含振幅值。
我目前使用数组的最大值作为结果幅度,因为它比使用总和更好。这种解释可能是我的错误。
我将不胜感激。我不需要使用python acoustics
。获得第三倍频程频谱的任何解决方案都很棒。
编辑:使用平均值而不是最大值会产生更好的结果,但是我仍然不完全满意。
import matplotlib.pyplot as plt
import numpy as np
from scipy.sparse import spdiags
from scipy.signal import butter, lfilter, freqz, filtfilt, sosfilt
import acoustics.octave
#from acoustics.octave import REFERENCE
import acoustics.bands
from scipy.signal import hilbert
from acoustics.standards.iso_tr_25417_2007 import REFERENCE_PRESSURE
from acoustics.standards.iec_61672_1_2013 import (NOMINAL_OCTAVE_CENTER_FREQUENCIES,
NOMINAL_THIRD_OCTAVE_CENTER_FREQUENCIES)
try:
from pyfftw.interfaces.numpy_fft import rfft
except ImportError:
from numpy.fft import rfft
def bandpass_filter(lowcut, highcut, fs, order=8, output='sos'):
"""Band-pass filter.
:param lowcut: Lower cut-off frequency
:param highcut: Upper cut-off frequency
:param fs: Sample frequency
:param order: Filter order
:param output: Output type. {'ba', 'zpk', 'sos'}. Default is 'sos'. See also :func:`scipy.signal.butter`.
:returns: Returned value depends on `output`.
A Butterworth filter is used.
.. seealso:: :func:`scipy.signal.butter`.
"""
nyq = 0.5 * fs
low = lowcut / nyq
high = highcut / nyq
output = butter(order / 2, [low, high], btype='band', output=output)
return output
def bandpass(signal, lowcut, highcut, fs, order=8, zero_phase=False):
"""Filter signal with band-pass filter.
:param signal: Signal
:param lowcut: Lower cut-off frequency
:param highcut: Upper cut-off frequency
:param fs: Sample frequency
:param order: Filter order
:param zero_phase: Prevent phase error by filtering in both directions (filtfilt)
A Butterworth filter is used. Filtering is done with second-order sections.
.. seealso:: :func:`bandpass_filter` for the filter that is used.
"""
sos = bandpass_filter(lowcut, highcut, fs, order, output='sos')
if zero_phase:
return _sosfiltfilt(sos, signal)
else:
return sosfilt(sos, signal)
class Frequencies:
"""
Object describing frequency bands.
"""
def __init__(self, center, lower, upper, bandwidth=None):
self.center = np.asarray(center)
"""
Center frequencies.
"""
self.lower = np.asarray(lower)
"""
Lower frequencies.
"""
self.upper = np.asarray(upper)
"""
Upper frequencies.
"""
self.bandwidth = np.asarray(bandwidth) if bandwidth is not None else np.asarray(self.upper) - np.asarray(
self.lower)
"""
Bandwidth.
"""
def __iter__(self):
for i in range(len(self.center)):
yield self[i]
def __len__(self):
return len(self.center)
def __str__(self):
return str(self.center)
def __repr__(self):
return "Frequencies({})".format(str(self.center))
def angular(self):
"""Angular center frequency in radians per second.
"""
return 2.0 * np.pi * self.center
class OctaveBand(Frequencies):
"""Fractional-octave band spectrum.
"""
def __init__(self, center=None, fstart=None, fstop=None, nbands=None, fraction=1,
reference=acoustics.octave.REFERENCE):
if center is not None:
try:
nbands = len(center)
except TypeError:
center = [center]
center = np.asarray(center)
indices = acoustics.octave.index_of_frequency(center, fraction=fraction, ref=reference)
elif fstart is not None and fstop is not None:
nstart = acoustics.octave.index_of_frequency(fstart, fraction=fraction, ref=reference)
nstop = acoustics.octave.index_of_frequency(fstop, fraction=fraction, ref=reference)
indices = np.arange(nstart, nstop + 1)
elif fstart is not None and nbands is not None:
nstart = acoustics.octave.index_of_frequency(fstart, fraction=fraction, ref=reference)
indices = np.arange(nstart, nstart + nbands)
elif fstop is not None and nbands is not None:
nstop = acoustics.octave.index_of_frequency(fstop, fraction=fraction, ref=reference)
indices = np.arange(nstop - nbands, nstop)
else:
raise ValueError("Insufficient parameters. Cannot determine fstart and/or fstop.")
center = acoustics.octave.exact_center_frequency(None, fraction=fraction, n=indices, ref=reference)
lower = acoustics.octave.lower_frequency(center, fraction=fraction)
upper = acoustics.octave.upper_frequency(center, fraction=fraction)
bandwidth = upper - lower
nominal = acoustics.octave.nominal_center_frequency(None, fraction, indices)
super(OctaveBand, self).__init__(center, lower, upper, bandwidth)
self.fraction = fraction
"""Fraction of fractional-octave filter.
"""
self.reference = reference
"""Reference center frequency.
"""
self.nominal = nominal
"""Nominal center frequencies.
"""
def __getitem__(self, key):
return type(self)(center=self.center[key], fraction=self.fraction, reference=self.reference)
def __repr__(self):
return "OctaveBand({})".format(str(self.center))
def bandpass_frequencies(x, fs, frequencies, order=8, purge=False, zero_phase=False):
""""Apply bandpass filters for frequencies
:param x: Instantaneous signal :math:`x(t)`.
:param fs: Sample frequency.
:param frequencies: Frequencies. Instance of :class:`Frequencies`.
:param order: Filter order.
:param purge: Discard bands of which the upper corner frequency is above the Nyquist frequency.
:param zero_phase: Prevent phase error by filtering in both directions (filtfilt)
:returns: Tuple. First element is an instance of :class:`OctaveBand`. The second element an array.
"""
if purge:
frequencies = frequencies[frequencies.upper < fs / 2.0]
return frequencies, np.array(
[bandpass(x, band.lower, band.upper, fs, order, zero_phase=zero_phase) for band in frequencies])
def bandpass_third_octaves(x, fs, frequencies=NOMINAL_THIRD_OCTAVE_CENTER_FREQUENCIES, order=8, purge=False,
zero_phase=False):
"""Apply 1/3-octave bandpass filters.
:param x: Instantaneous signal :math:`x(t)`.
:param fs: Sample frequency.
:param frequencies: Frequencies.
:param order: Filter order.
:param purge: Discard bands of which the upper corner frequency is above the Nyquist frequency.
:param zero_phase: Prevent phase error by filtering in both directions (filtfilt)
:returns: Tuple. First element is an instance of :class:`OctaveBand`. The second element an array.
.. seealso:: :func:`octavepass`
"""
return bandpass_fractional_octaves(x, fs, frequencies, fraction=3, order=order, purge=purge, zero_phase=zero_phase)
def bandpass_fractional_octaves(x, fs, frequencies, fraction=None, order=8, purge=False, zero_phase=False):
"""Apply 1/N-octave bandpass filters.
:param x: Instantaneous signal :math:`x(t)`.
:param fs: Sample frequency.
:param frequencies: Frequencies. Either instance of :class:`OctaveBand`, or array along with fs.
:param order: Filter order.
:param purge: Discard bands of which the upper corner frequency is above the Nyquist frequency.
:param zero_phase: Prevent phase error by filtering in both directions (filtfilt)
:returns: Tuple. First element is an instance of :class:`OctaveBand`. The second element an array.
.. seealso:: :func:`octavepass`
"""
if not isinstance(frequencies, Frequencies):
frequencies = OctaveBand(center=frequencies, fraction=fraction)
return bandpass_frequencies(x, fs, frequencies, order=order, purge=purge, zero_phase=zero_phase)
def _sosfiltfilt(sos, x, axis=-1, padtype='odd', padlen=None, method='pad', irlen=None):
"""Filtfilt version using Second Order sections. Code is taken from scipy.signal.filtfilt and adapted to make it work with SOS.
Note that broadcasting does not work.
"""
from scipy.signal import sosfilt_zi
from scipy.signal._arraytools import odd_ext, axis_slice, axis_reverse
x = np.asarray(x)
if padlen is None:
edge = 0
else:
edge = padlen
# x's 'axis' dimension must be bigger than edge.
if x.shape[axis] <= edge:
raise ValueError("The length of the input vector x must be at least " "padlen, which is %d." % edge)
if padtype is not None and edge > 0:
# Make an extension of length `edge` at each
# end of the input array.
if padtype == 'even':
ext = even_ext(x, edge, axis=axis)
elif padtype == 'odd':
ext = odd_ext(x, edge, axis=axis)
else:
ext = const_ext(x, edge, axis=axis)
else:
ext = x
# Get the steady state of the filter's step response.
zi = sosfilt_zi(sos)
# Reshape zi and create x0 so that zi*x0 broadcasts
# to the correct value for the 'zi' keyword argument
# to lfilter.
#zi_shape = [1] * x.ndim
#zi_shape[axis] = zi.size
#zi = np.reshape(zi, zi_shape)
x0 = axis_slice(ext, stop=1, axis=axis)
# Forward filter.
(y, zf) = sosfilt(sos, ext, axis=axis, zi=zi * x0)
# Backward filter.
# Create y0 so zi*y0 broadcasts appropriately.
y0 = axis_slice(y, start=-1, axis=axis)
(y, zf) = sosfilt(sos, axis_reverse(y, axis=axis), axis=axis, zi=zi * y0)
# Reverse y.
y = axis_reverse(y, axis=axis)
if edge > 0:
# Slice the actual signal from the extended signal.
y = axis_slice(y, start=edge, stop=-edge, axis=axis)
return y
rho = 1.2
a = 340
N_b = 1
R = 1
r_H = 10
A = np.pi*R**2
TA = 287
M_H = 0.3
w = M_H*a/R
n = w/(2*np.pi)
t = np.linspace(0,0.8,num=40000)
az = t*2*np.pi*n*N_b
sin = np.sin(az)
cos = np.cos(az)
#Thickness Noise
F_H = R/r_H
F_E = 0.00012875807653441588 #Bestimmt für den Propeller aus Paper
T1 = ((3-M_H*sin)*sin)/((1-M_H*sin)**3)
T2 = (M_H*(cos**2))/(10*(1-M_H*sin)**4)
T3 = 50 + 39*(M_H**2) - 45*M_H*sin - 11*(M_H**2)*(sin**2) + 12* (M_H**3) *sin - 18*(M_H**3)*(sin**3)
T_M = ((M_H**3)/12)*(-T1 + T2 * T3)
p_T = 0.5 * rho * a**2 * F_H * F_E * T_M
#Loading Noise
F_T = (TA/ (rho * a**2))**(3/2) * (1 / (60 * np.sqrt(2) * N_b))
L = 60 + 30 * M_H**2 * cos**2 - 120 * M_H * sin - 30 * M_H**3 * sin * cos**2 + 80 * M_H**2 * sin**2 + 9 * M_H**4 * sin**2 * cos**2 - 20 * M_H**3 * sin**3
L_M = cos * (1 - M_H * sin)**(-3) * L
p_L = 0.5 * rho * a**2 * F_H * F_T * L_M
#Total
p_total = p_T + p_L
plt.figure(1)
plt.plot(t, p_total)
plt.title('Signal in time domain')
plt.xlabel('time [s]')
plt.ylabel('acoustic pressure [Pa]')
#fundamental frequency
ff = n*N_b
print('ff',ff)
#Sampling frequency
T = t[1] - t[0]
f_s = 1/T
print('fs',f_s)
#Trying to get the one third octave frequency spectrum
test = bandpass_third_octaves(p_total, f_s,frequencies=NOMINAL_THIRD_OCTAVE_CENTER_FREQUENCIES,order=8,purge=False,zero_phase = True)
a_l = list()
i = 0
while i < 34:
a = max(test[1][i])
a_l.append(a)
i+=1
f = NOMINAL_THIRD_OCTAVE_CENTER_FREQUENCIES
plt.figure(2)
plt.bar(f, np.abs(a_l))
plt.title('Supposed one third octave spectrum of the time signal')
plt.xlabel('frequency [Hz]')
plt.ylabel('acoustic pressure [Pa]')
plt.xlim(0,100)
#FFT of the time signal p_total
N = p_total.size
f = np.linspace(0, 1/T, N)
f_scaled = f[:N // 2]
p_total -= np.mean(p_total)
fft = np.fft.fft(p_total)
fft_scaled = np.abs(fft)[:N // 2] * 2 / N
plt.figure(3)
plt.bar(f_scaled, fft_scaled)
plt.title('Signal in frequency domain')
plt.xlabel('frequency [Hz]')
plt.ylabel('acoustic pressure [Pa]')
plt.xlim(0,100)
plt.show()