我正在尝试安装Spark ML管道,但我的执行者死了。 The project is also on GitHub。这是不起作用的脚本(稍微简化):
// Prepare data sets
logInfo("Getting datasets")
val emoTrainingData = sqlc.read.parquet("/tw/sentiment/emo/parsed/data.parquet")
val trainingData = emoTrainingData
// Configure the pipeline
val pipeline = new Pipeline().setStages(Array(
new FeatureReducer().setInputCol("raw_text").setOutputCol("reduced_text"),
new StringSanitizer().setInputCol("reduced_text").setOutputCol("text"),
new Tokenizer().setInputCol("text").setOutputCol("raw_words"),
new StopWordsRemover().setInputCol("raw_words").setOutputCol("words"),
new HashingTF().setInputCol("words").setOutputCol("features"),
new NaiveBayes().setSmoothing(0.5).setFeaturesCol("features"),
new ColumnDropper().setDropColumns("raw_text", "reduced_text", "text", "raw_words", "words", "features")
))
// Fit the pipeline
logInfo(s"Training model on ${trainingData.count()} rows")
val model = pipeline.fit(trainingData)
它执行到最后一行。它打印“xx行上的训练模型”,然后它开始拟合,执行程序死亡,驱动程序没有从执行程序接收心跳并且超时,然后脚本退出。它没有超越那条线。
这是杀死遗嘱执行人的例外:
java.io.IOException: java.lang.ClassCastException: cannot assign instance of scala.collection.immutable.HashMap$SerializationProxy to field org.apache.spark.executor.TaskMetrics._accumulatorUpdates of type scala.collection.immutable.Map in instance of org.apache.spark.executor.TaskMetrics
at org.apache.spark.util.Utils$.tryOrIOException(Utils.scala:1207)
at org.apache.spark.executor.TaskMetrics.readObject(TaskMetrics.scala:219)
at sun.reflect.GeneratedMethodAccessor15.invoke(Unknown Source)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:497)
at java.io.ObjectStreamClass.invokeReadObject(ObjectStreamClass.java:1058)
at java.io.ObjectInputStream.readSerialData(ObjectInputStream.java:1900)
at java.io.ObjectInputStream.readOrdinaryObject(ObjectInputStream.java:1801)
at java.io.ObjectInputStream.readObject0(ObjectInputStream.java:1351)
at java.io.ObjectInputStream.readObject(ObjectInputStream.java:371)
at org.apache.spark.util.Utils$.deserialize(Utils.scala:92)
at org.apache.spark.executor.Executor$$anonfun$org$apache$spark$executor$Executor$$reportHeartBeat$1$$anonfun$apply$6.apply(Executor.scala:436)
at org.apache.spark.executor.Executor$$anonfun$org$apache$spark$executor$Executor$$reportHeartBeat$1$$anonfun$apply$6.apply(Executor.scala:426)
at scala.Option.foreach(Option.scala:257)
at org.apache.spark.executor.Executor$$anonfun$org$apache$spark$executor$Executor$$reportHeartBeat$1.apply(Executor.scala:426)
at org.apache.spark.executor.Executor$$anonfun$org$apache$spark$executor$Executor$$reportHeartBeat$1.apply(Executor.scala:424)
at scala.collection.Iterator$class.foreach(Iterator.scala:742)
at scala.collection.AbstractIterator.foreach(Iterator.scala:1194)
at scala.collection.IterableLike$class.foreach(IterableLike.scala:72)
at scala.collection.AbstractIterable.foreach(Iterable.scala:54)
at org.apache.spark.executor.Executor.org$apache$spark$executor$Executor$$reportHeartBeat(Executor.scala:424)
at org.apache.spark.executor.Executor$$anon$1$$anonfun$run$1.apply$mcV$sp(Executor.scala:468)
at org.apache.spark.executor.Executor$$anon$1$$anonfun$run$1.apply(Executor.scala:468)
at org.apache.spark.executor.Executor$$anon$1$$anonfun$run$1.apply(Executor.scala:468)
at org.apache.spark.util.Utils$.logUncaughtExceptions(Utils.scala:1741)
at org.apache.spark.executor.Executor$$anon$1.run(Executor.scala:468)
at java.util.concurrent.Executors$RunnableAdapter.call(Executors.java:511)
at java.util.concurrent.FutureTask.runAndReset(FutureTask.java:308)
at java.util.concurrent.ScheduledThreadPoolExecutor$ScheduledFutureTask.access$301(ScheduledThreadPoolExecutor.java:180)
at java.util.concurrent.ScheduledThreadPoolExecutor$ScheduledFutureTask.run(ScheduledThreadPoolExecutor.java:294)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
at java.lang.Thread.run(Thread.java:745)
Caused by: java.lang.ClassCastException: cannot assign instance of scala.collection.immutable.HashMap$SerializationProxy to field org.apache.spark.executor.TaskMetrics._accumulatorUpdates of type scala.collection.immutable.Map in instance of org.apache.spark.executor.TaskMetrics
at java.io.ObjectStreamClass$FieldReflector.setObjFieldValues(ObjectStreamClass.java:2133)
at java.io.ObjectStreamClass.setObjFieldValues(ObjectStreamClass.java:1305)
at java.io.ObjectInputStream.defaultReadFields(ObjectInputStream.java:2006)
at java.io.ObjectInputStream.defaultReadObject(ObjectInputStream.java:501)
at org.apache.spark.executor.TaskMetrics$$anonfun$readObject$1.apply$mcV$sp(TaskMetrics.scala:220)
at org.apache.spark.util.Utils$.tryOrIOException(Utils.scala:1204)
... 32 more
稍后会导致超时:
ERROR TaskSchedulerImpl: Lost executor driver on localhost: Executor heartbeat timed out after 142918 ms
我上传了INFO级日志文件here。 DEBUG日志大约是500MB。
构建文件和依赖项似乎没问题:
name := "tweeather"
version := "1.0.0"
scalaVersion := "2.11.7"
libraryDependencies ++= Seq(
"org.apache.spark" %% "spark-core" % "1.6.0",
"org.apache.spark" %% "spark-mllib" % "1.6.0",
"org.apache.spark" %% "spark-streaming" % "1.6.0",
"org.apache.hadoop" % "hadoop-client" % "2.7.1",
"com.github.fommil.netlib" % "all" % "1.1.2" pomOnly(),
"org.twitter4j" % "twitter4j-stream" % "4.0.4",
"org.scalaj" %% "scalaj-http" % "2.0.0",
"com.jsuereth" %% "scala-arm" % "1.4",
"edu.ucar" % "grib" % "4.6.3"
)
dependencyOverrides ++= Set(
"com.fasterxml.jackson.core" % "jackson-databind" % "2.4.4",
"org.scala-lang" % "scala-compiler" % scalaVersion.value,
"org.scala-lang.modules" %% "scala-parser-combinators" % "1.0.4",
"org.scala-lang.modules" %% "scala-xml" % "1.0.4",
"jline" % "jline" % "2.12.1"
)
resolvers ++= Seq(
"Unidata Releases" at "http://artifacts.unidata.ucar.edu/content/repositories/unidata-releases/"
)
答案 0 :(得分:1)
我仍然不知道原因究竟是什么,但我只用三分之一的输入数据再次运行脚本并且它有效。它不再失败了。根据我的观察,如果我有超过10,000个任务,它只会崩溃。
我最终将我的数据(在另一个脚本中)合并到99个分区中。在我再次运行脚本后,它成功地计算了所有内容。
答案 1 :(得分:0)
我遇到了同样的问题,但工作没有崩溃。它抛出了错误,但无论如何它都会完成这项工作。所以这似乎是一个锁定问题。
在我提出配置使用2 proc(localhost [2])后,它就消失了。因此,您可能需要处理的任务多于您的流程可以处理的任务。