我有以下字典:
dict = {1000021: [[0.6, [1000024, 1, -2]], [0.4, [1000022, 21]]],
1000024: [[0.7, [1000022, 11, -12]], [0.3, [1000022, 2, -1]]]}
对应于以下概率树:
从1000021
开始,我现在需要计算每个可能端点的所有概率和数字列表。每当有一个带字典条目的数字时,我都需要遵循这条路径。字典可以具有随机数量的条目和随机数量的子列表。期望的输出:
[0.4, [1000022, 21]],
[0.42, [1000022, 11, -12, 1, -2]],
[0.18, [1000022, 2, -1, 1, -2]
我尝试使用递归函数执行此操作,但无济于事。任何帮助表示赞赏。
编辑:
我在第一个例子中并不清楚,因为它可能导致假设,只有子列表中的第一个元素可以有一个字典条目,而所有这些元素实际上都可以有一个。 Copperfield给出的答案适用于上面的例子,但它不适用于例如。
mydata = {1: [[.9, [2,3]], [.1, [4,5]]],
4: [[.2, [6,7]], [.5, [8,9]], [.3, [10,11,12]]],
5: [[.4, [13,14]], [.6, [15,16]]]}
我期望输出为:
[0.9, [2, 3]],
[0.008, [6, 7, 13, 14]],
[0.012, [6, 7, 15, 16]],
[0.02, [8, 9, 13, 14]],
[0.03, [8, 9, 15, 16]],
[0.012, [10, 11, 12, 13, 14]],
[0.018, [10, 11, 12, 15, 16]]
答案 0 :(得分:1)
远离树,但这个怎么样
import copy
mydata = {1000024: [[0.7, [1000022, 11, -12]], [0.3, [1000022, 2, -1]]],
1000021: [[0.6, [1000024, 1, -2]], [0.4, [1000022, 21]]]}
def prob_tree(data,ini,prob=1):
data=copy.deepcopy(data)
val=data.pop(ini,None)
if val:
for lst in val:
if lst[1][0] in data:
extra=lst[1][1:]
for x in data[lst[1][0]]:
x[1].extend(extra)
prob_tree(data,lst[1][0],lst[0])
else:
print( prob*lst[0],lst[1])
prob_tree(mydata,1000021)
输出
0.42 [1000022, 11, -12, 1, -2]
0.18 [1000022, 2, -1, 1, -2]
0.4 [1000022, 21]
修改强>
在灵感来袭中,这里使用了一些功能风格的新版本
import itertools, functools
def partition(pred, iterable):
'Use a predicate to partition entries into false entries and true entries'
# partition(is_odd, range(10)) --> 0 2 4 6 8 and 1 3 5 7 9
# Direct from the recipes in itertools documentation
t1, t2 = itertools.tee(iterable)
return itertools.filterfalse(pred, t1), filter(pred, t2)
def prob_tree(data,ini) -> (float,tuple):
"""Generator of all end points of the probability tree contained
in data, starting with ini"""
for prob,path in data[ini]:
no_more,more = map(tuple,partition(lambda x: x in data, path))
if more:
for node in itertools.product( *[prob_tree(data,x) for x in more] ):
new_prob,new_path = functools.reduce(lambda acum,new: (acum[0]*new[0],acum[1]+new[1]),node,(prob,tuple()))
yield new_prob, no_more + new_path
else:
yield prob, no_more
mydata = {1: [[.9, [2,3]], [.1, [4,5]]],
4: [[.2, [6,7]], [.5, [8,9]], [.3, [10,11,12]]],
5: [[.4, [13,14]], [.6, [15,16]]]
}
mydata2 = {1: [[.8, [2,3]], [.1, [4,5]],[.05, [2,4]],[.05,[5,6]] ],
4: [[.2, [6,7]], [.5, [8,9]], [.3, [10,11,12]]],
5: [[.4, [13,14]], [.6, [15,16]]]
}
mydata3 = {1: [[.8, [2,3]], [.1, [4,5]],[.05, [2,4]],[.05,[5,6]] ],
4: [[.2, [6,7]], [.5, [8,9]], [.3, [10,11,12]]],
5: [[.4, [13,14]], [.6, [15,16]]],
13:[[.58,[23,32]],[.42,[42]] ],
16:[ [.9,[17,18]], [.1,[20,21]] ],
}
输出
>>> for x in prob_tree(mydata,1):
print(x)
(0.9, (2, 3))
(0.008000000000000002, (6, 7, 13, 14))
(0.012000000000000002, (6, 7, 15, 16))
(0.020000000000000004, (8, 9, 13, 14))
(0.03, (8, 9, 15, 16))
(0.012, (10, 11, 12, 13, 14))
(0.018, (10, 11, 12, 15, 16))
>>>
>>>
>>> for x in prob_tree(mydata2,1):
print(x)
(0.8, (2, 3))
(0.008000000000000002, (6, 7, 13, 14))
(0.012000000000000002, (6, 7, 15, 16))
(0.020000000000000004, (8, 9, 13, 14))
(0.03, (8, 9, 15, 16))
(0.012, (10, 11, 12, 13, 14))
(0.018, (10, 11, 12, 15, 16))
(0.010000000000000002, (2, 6, 7))
(0.025, (2, 8, 9))
(0.015, (2, 10, 11, 12))
(0.020000000000000004, (6, 13, 14))
(0.03, (6, 15, 16))
>>>
>>>
>>>
>>> for x in prob_tree(mydata3,1):
print(x)
(0.8, (2, 3))
(0.004640000000000001, (6, 7, 14, 23, 32))
(0.003360000000000001, (6, 7, 14, 42))
(0.010800000000000002, (6, 7, 15, 17, 18))
(0.0012000000000000001, (6, 7, 15, 20, 21))
(0.0116, (8, 9, 14, 23, 32))
(0.008400000000000001, (8, 9, 14, 42))
(0.027000000000000003, (8, 9, 15, 17, 18))
(0.003, (8, 9, 15, 20, 21))
(0.006959999999999999, (10, 11, 12, 14, 23, 32))
(0.00504, (10, 11, 12, 14, 42))
(0.0162, (10, 11, 12, 15, 17, 18))
(0.0018, (10, 11, 12, 15, 20, 21))
(0.010000000000000002, (2, 6, 7))
(0.025, (2, 8, 9))
(0.015, (2, 10, 11, 12))
(0.0116, (6, 14, 23, 32))
(0.008400000000000001, (6, 14, 42))
(0.027000000000000003, (6, 15, 17, 18))
(0.003, (6, 15, 20, 21))
>>>
编辑2 添加循环引用检查
def prob_tree_with_check(data,ini,visited=frozenset()):
"""Generator of all end points of the probability tree contained
in data, starting with ini. Check if a previously visited branch
of the tree is visited again and raise RuntimeError in that case"""
if ini in visited:
raise RuntimeError("Branch allready visited: %r"%ini)
visited = visited.union((ini,))
for prob,path in data[ini]:
no_more,more = map(tuple,partition(lambda x: x in data,path))
if more:
for node in itertools.product( *[prob_tree_with_check(data,x,visited) for x in more] ):
new_prob,new_path = functools.reduce(lambda acum,new: (acum[0]*new[0],acum[1]+new[1]),node,(prob,tuple()))
yield new_prob, no_more + new_path
else:
yield prob, no_more
mydata_bad = {1: [[.9, [2,3]], [.1, [4,5]]],
4: [[.2, [6,7]], [.5, [8,9]], [.3, [10,11,12]]],
5: [[.4, [13,14]], [.6, [15,16,1]]] # <-- try to go back to 1
}
输出
>>> for x in prob_tree_with_check(mydata_bad,1):
x
(0.9, (2, 3))
Traceback (most recent call last):
File "<pyshell#35>", line 1, in <module>
for x in prob_tree_with_check(mydata_bad,1):
File "C:\Users\David\Documents\Python Scripts\stackoverflow_test.py", line 137, in prob_tree_with_check
for node in itertools.product( *[prob_tree_with_check(data,x,visited) for x in more] ):
File "C:\Users\David\Documents\Python Scripts\stackoverflow_test.py", line 137, in prob_tree_with_check
for node in itertools.product( *[prob_tree_with_check(data,x,visited) for x in more] ):
File "C:\Users\David\Documents\Python Scripts\stackoverflow_test.py", line 132, in prob_tree_with_check
raise RuntimeError("Branch already visited: %r"%ini)
RuntimeError: Branch already visited: 1
>>>