Max温度Mapreduce java代码中的运行时错误

时间:2016-01-05 11:28:33

标签: java apache hadoop mapreduce hadoop-streaming

我正在运行mapreduce代码,我得到的错误是

    Error: java.lang.ClassCastException: org.apache.hadoop.io.LongWritable cannot be cast to org.apache.hadoop.io.IntWritable
        at test.temp$Mymapper.map(temp.java:1)
        at org.apache.hadoop.mapreduce.Mapper.run(Mapper.java:146)
        at org.apache.hadoop.mapred.MapTask.runNewMapper(MapTask.java:787)
        at org.apache.hadoop.mapred.MapTask.run(MapTask.java:341)
        at org.apache.hadoop.mapred.YarnChild$2.run(YarnChild.java:164)
        at java.security.AccessController.doPrivileged(Native Method)
        at javax.security.auth.Subject.doAs(Subject.java:415)
        at org.apache.hadoop.security.UserGroupInformation.doAs(UserGroupInformation.java:1657)
        at org.apache.hadoop.mapred.YarnChild.main(YarnChild.java:158)

代码如下:

    package test;

import java.io.IOException;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
//import org.apache.hadoop.mapred.JobConf;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;


public class temp {
    public static class Mymapper extends Mapper<Object, Text, IntWritable,Text> {

        public void map(Object key, Text value,Context context) throws IOException, InterruptedException{

            int month=Integer.parseInt(value.toString().substring(17, 19));
            IntWritable mon=new IntWritable(month);
            String temp=value.toString().substring(27,31);
            String t=null;
            for(int i=0;i<temp.length();i++){
                if(temp.charAt(i)==',')
                        break;

                else
                    t=t+temp.charAt(i);
            }

            Text data=new Text(value.toString().substring(22, 26)+t);
            context.write(mon, data);
        }


    }

    public static class Myreducer extends  Reducer<IntWritable,Text,IntWritable,IntWritable> {

        public void reduce(IntWritable key,Iterable<Text> values,Context context) throws IOException, InterruptedException{
            String temp="";
            int max=0;
            for(Text t:values)
            {
                temp=t.toString();
                if(temp.substring(0, 4)=="TMAX"){

                    if(Integer.parseInt(temp.substring(4,temp.length()))>max){
                        max=Integer.parseInt(temp.substring(4,temp.length()));
                    }
                }
            }

            context.write(key,new IntWritable(max));
        }



        }



    public static void main(String[] args) throws Exception {
        Configuration conf = new Configuration();
        Job job = Job.getInstance(conf, "temp");
        job.setJarByClass(temp.class);
        job.setMapperClass(Mymapper.class);
        job.setCombinerClass(Myreducer.class);
        job.setReducerClass(Myreducer.class);
        job.setOutputKeyClass(IntWritable.class);
        job.setOutputValueClass(IntWritable.class);

        FileInputFormat.addInputPath(job, new Path(args[0]));
        FileOutputFormat.setOutputPath(job, new Path(args[1]));
        job.waitForCompletion(true);

        }

}

,输入文件为

USC00300379,19000101,TMAX,-78 ,,, 6, USC00300379,19000101,TMAX,-133 ,,, 6, USC00300379,19000101,TMAX,127 ,,, 6

请回复并帮助!

4 个答案:

答案 0 :(得分:0)

认为您正在使用TextInputFormat作为作业的输入格式。这会生成LongWritable / Text,而Hadoop则从中派生map-output类。

尝试显式设置地图输出类并删除组合器:

job.setMapOutputKeyClass(IntWritable.class);
job.setMapOutputValueClass(Text.class);
// job.setCombinerClass(Myreducer.class);

只有map和reduce输出兼容,才能使用合并器!

答案 1 :(得分:0)

您已在驱动程序中设置以下内容:

job.setOutputKeyClass(IntWritable.class);
job.setOutputValueClass(IntWritable.class);

这意味着,mapper和reducer输出键类应为IntWritable,值类应为IntWritable

减速机很好:

public static class Myreducer extends  Reducer<IntWritable,Text,IntWritable,IntWritable> 

此处输出键和值均为IntWritable

问题在于映射器:

public static class Mymapper extends Mapper<Object, Text, IntWritable,Text> 

此处输出密钥类为IntWritable。但是,输出值类为Text(预计为IntWritable)。

如果映射器的输出键/值类与reducer的输出键/值类不同,那么您需要向驱动程序显式添加以下语句:

setMapOutputKeyClass();
setMapOutputValueClass();

在您的代码中进行以下更改:

  • 设置地图输出键和值类:在您的情况下,由于您的mapper和reducer输出键和值类不同,您需要设置以下内容:

    job.setMapOutputKeyClass(IntWritable.class);
    job.setMapOutputValueClass(Text.class);
    
    job.setOutputKeyClass(IntWritable.class);
    job.setOutputValueClass(IntWritable.class);
    
  • 禁用合并器:由于您使用Reducer Combiner代码,Combiner的输出将为IntwritableIntWritable。但是,Reducer期望输入为IntWritableText。因此,您将获得以下异常,因为它的值为IntWritable而不是Text

    Error: java.io.IOException: wrong value class: class org.apache.hadoop.io.IntWritable is not class org.apache.hadoop.io.Text
    

    要删除此错误,您需要停用Combiner

    job.setCombinerClass(Myreducer.class);
    
  • 不要将reducer用作组合器:如果您肯定需要使用组合器,则编写一个输出键/值为IntWritable且{{1}的组合器}}。

答案 2 :(得分:0)

在驱动程序中设置以下内容时

output

它定义了mapper和reducer的connect.write(IntWritable, IntWritable)类,而不仅仅是reducer。

这意味着您的映射器应该有connect.write(IntWritable, Text),但您已编码job.setMapOutputKeyClass(IntWritable.class); job.setMapOutputValueClass(Text.class);

修复:当地图输出类型与reduce输出不同时,您需要显式设置mapper的输出类型。因此,请在驱动程序代码中添加以下内容。

singular_slug

答案 3 :(得分:0)

这是我所做的改变。

public static void main(String[] args) throws Exception {

        Configuration conf = new Configuration();
        Job job = Job.getInstance(conf, "temp");

        job.setJarByClass(Temp.class);

        job.setMapperClass(Mymapper.class);
        job.setReducerClass(Myreducer.class);

        job.setMapOutputKeyClass(IntWritable.class);
        job.setMapOutputValueClass(Text.class);

        job.setOutputKeyClass(IntWritable.class);
        job.setOutputValueClass(IntWritable.class);

        FileInputFormat.addInputPath(job, new Path(args[0]));
        FileOutputFormat.setOutputPath(job, new Path(args[1]));

        job.setNumReduceTasks(1);
        job.waitForCompletion(true);
    }

输出: 10 0

有关解释请遵循Manjunath Ballur的帖子。