我正在尝试预取训练数据以隐藏I / O延迟。我想编写自定义Python代码,从磁盘加载数据并预处理数据(例如通过添加上下文窗口)。换句话说,一个线程进行数据预处理,另一个线程进行训练。这在TensorFlow中是否可行?
更新:我有一个基于@ mrry示例的工作示例。
import numpy as np
import tensorflow as tf
import threading
BATCH_SIZE = 5
TRAINING_ITERS = 4100
feature_input = tf.placeholder(tf.float32, shape=[128])
label_input = tf.placeholder(tf.float32, shape=[128])
q = tf.FIFOQueue(200, [tf.float32, tf.float32], shapes=[[128], [128]])
enqueue_op = q.enqueue([label_input, feature_input])
label_batch, feature_batch = q.dequeue_many(BATCH_SIZE)
c = tf.reshape(feature_batch, [BATCH_SIZE, 128]) + tf.reshape(label_batch, [BATCH_SIZE, 128])
sess = tf.Session()
def load_and_enqueue(sess, enqueue_op, coord):
with open('dummy_data/features.bin') as feature_file, open('dummy_data/labels.bin') as label_file:
while not coord.should_stop():
feature_array = np.fromfile(feature_file, np.float32, 128)
if feature_array.shape[0] == 0:
print('reach end of file, reset using seek(0,0)')
feature_file.seek(0,0)
label_file.seek(0,0)
continue
label_value = np.fromfile(label_file, np.float32, 128)
sess.run(enqueue_op, feed_dict={feature_input: feature_array,
label_input: label_value})
coord = tf.train.Coordinator()
t = threading.Thread(target=load_and_enqueue, args=(sess,enqueue_op, coord))
t.start()
for i in range(TRAINING_ITERS):
sum = sess.run(c)
print('train_iter='+str(i))
print(sum)
coord.request_stop()
coord.join([t])
答案 0 :(得分:52)
这是一个常见的用例,大多数实现都使用TensorFlow的队列来将预处理代码与训练代码分离。有a tutorial on how to use queues,但主要步骤如下:
定义一个队列q
,它将缓冲预处理的数据。 TensorFlow支持以排队顺序生成元素的简单tf.FIFOQueue
,以及以随机顺序生成元素的更高级tf.RandomShuffleQueue
。队列元素是一个或多个张量的元组(可以具有不同的类型和形状)。所有队列都支持单元素(enqueue
,dequeue
)和批处理(enqueue_many
,dequeue_many
)操作,但要使用批处理操作,您必须指定每个张量的形状在构造队列时在队列元素中。
构建一个子图,将预处理的元素排入队列。一种方法是为与单个输入示例相对应的张量定义一些tf.placeholder()
操作,然后将它们传递给q.enqueue()
。 (如果您的预处理一次生成批处理,则应使用q.enqueue_many()
代替。)您可能还在此子图中包含TensorFlow操作。
构建执行培训的子图。这看起来像是常规的TensorFlow图,但会通过调用q.dequeue_many(BATCH_SIZE)
来获取其输入。
开始您的会话。
创建一个或多个执行预处理逻辑的线程,然后执行enqueue op,输入预处理的数据。您可能会发现tf.train.Coordinator
和tf.train.QueueRunner
实用程序类对此很有用。
正常运行训练图(优化器等)。
编辑:这是一个简单的load_and_enqueue()
函数和代码片段,可以帮助您入门:
# Features are length-100 vectors of floats
feature_input = tf.placeholder(tf.float32, shape=[100])
# Labels are scalar integers.
label_input = tf.placeholder(tf.int32, shape=[])
# Alternatively, could do:
# feature_batch_input = tf.placeholder(tf.float32, shape=[None, 100])
# label_batch_input = tf.placeholder(tf.int32, shape=[None])
q = tf.FIFOQueue(100, [tf.float32, tf.int32], shapes=[[100], []])
enqueue_op = q.enqueue([feature_input, label_input])
# For batch input, do:
# enqueue_op = q.enqueue_many([feature_batch_input, label_batch_input])
feature_batch, label_batch = q.dequeue_many(BATCH_SIZE)
# Build rest of model taking label_batch, feature_batch as input.
# [...]
train_op = ...
sess = tf.Session()
def load_and_enqueue():
with open(...) as feature_file, open(...) as label_file:
while True:
feature_array = numpy.fromfile(feature_file, numpy.float32, 100)
if not feature_array:
return
label_value = numpy.fromfile(feature_file, numpy.int32, 1)[0]
sess.run(enqueue_op, feed_dict={feature_input: feature_array,
label_input: label_value})
# Start a thread to enqueue data asynchronously, and hide I/O latency.
t = threading.Thread(target=load_and_enqueue)
t.start()
for _ in range(TRAINING_EPOCHS):
sess.run(train_op)
答案 1 :(得分:7)
换句话说,一个线程进行数据预处理,另一个线程进行训练。这在TensorFlow中是否可行?
是的,确实如此。 mrry的解决方案有效,但存在更简单。
tf.py_func
包装python函数并将其用作TensorFlow运算符。因此,我们每次都可以在sess.run()
加载数据。这种方法的问题是数据是在sess.run()
期间通过主线程加载的。
一个最小的例子:
def get_numpy_tensor():
return np.array([[1,2],[3,4]], dtype=np.float32)
tensorflow_tensor = tf.py_func(get_numpy_tensor, [], tf.float32)
一个更复杂的例子:
def get_numpy_tensors():
# Load data from the disk into numpy arrays.
input = np.array([[1,2],[3,4]], dtype=np.float32)
target = np.int32(1)
return input, target
tensorflow_input, tensorflow_target = tf.py_func(get_numpy_tensors, [], [tf.float32, tf.int32])
tensorflow_input, tensorflow_target = 2*tensorflow_input, 2*tensorflow_target
sess = tf.InteractiveSession()
numpy_input, numpy_target = sess.run([tensorflow_input, tensorflow_target])
assert np.all(numpy_input==np.array([[2,4],[6,8]])) and numpy_target==2
要在另一个线程中排队我们的数据(以便sess.run()
不必等待数据),我们可以对来自tf.py_func()
的运算符使用tf.train.batch()
。< / p>
一个最小的例子:
tensor_shape = get_numpy_tensor().shape
tensorflow_tensors = tf.train.batch([tensorflow_tensor], batch_size=32, shapes=[tensor_shape])
# Run `tf.train.start_queue_runners()` once session is created.
如果shapes
指定了其形状,我们可以省略参数tensorflow_tensor
:
tensor_shape = get_numpy_tensor().shape
tensorflow_tensor.set_shape(tensor_shape)
tensorflow_tensors = tf.train.batch([tensorflow_tensor], batch_size=32)
# Run `tf.train.start_queue_runners()` once session is created.
一个更复杂的例子:
input_shape, target_shape = (2, 2), ()
def get_numpy_tensors():
input = np.random.rand(*input_shape).astype(np.float32)
target = np.random.randint(10, dtype=np.int32)
print('f', end='')
return input, target
tensorflow_input, tensorflow_target = tf.py_func(get_numpy_tensors, [], [tf.float32, tf.int32])
batch_size = 2
tensorflow_inputs, tensorflow_targets = tf.train.batch([tensorflow_input, tensorflow_target], batch_size, shapes=[input_shape, target_shape], capacity=2)
# Internal queue will contain at most `capasity=2` times `batch_size=2` elements `[tensorflow_input, tensorflow_target]`.
tensorflow_inputs, tensorflow_targets = 2*tensorflow_inputs, 2*tensorflow_targets
sess = tf.InteractiveSession()
tf.train.start_queue_runners() # Internally, `tf.train.batch` uses a QueueRunner, so we need to ask tf to start it.
for _ in range(10):
numpy_inputs, numpy_targets = sess.run([tensorflow_inputs, tensorflow_targets])
assert numpy_inputs.shape==(batch_size, *input_shape) and numpy_targets.shape==(batch_size, *target_shape)
print('r', end='')
# Prints `fffffrrffrfrffrffrffrffrffrffrf`.
如果get_numpy_tensor()
返回一批张量,则tf.train.batch(..., enqueue_many=True)
会有所帮助。