无法在python中使用svm预测浮动值

时间:2016-01-04 06:55:31

标签: python regression svm

当我尝试在python中实现一个简单的svm回归模型时,我能够预测整数值,但浮动值的预测不起作用。

代码:

from sklearn import svm
import warnings
warnings.filterwarnings("ignore", category=DeprecationWarning) 
import numpy as np
data = np.genfromtxt("a.csv", dtype=None, delimiter=',') 
print data 
X=data[:,0:1]
y=data[:,1]
clf =svm.SVC()
clf.fit(X, y) 
m=clf.predict([1.2])
print m

错误:

Traceback (most recent call last):
  File "svm3.py", line 10, in <module>
    clf.fit(X, y) 
  File "/home/narayan/.local/lib/python2.7/site-packages/sklearn/svm/base.py", line 151, in fit
  y = self._validate_targets(y)
 File "/home/narayan/.local/lib/python2.7/site-packages/sklearn/svm/base.py", line 515, in _validate_targets
    check_classification_targets(y)
  File "/home/narayan/.local/lib/python2.7/site-packages/sklearn/utils/multiclass.py", line 173, in check_classification_targets
    raise ValueError("Unknown label type: %r" % y)
ValueError: Unknown label type: array([ 3.6,  6.6,  9.9])

CSV文件数据:

[[ 1.2  3.6]
[ 2.2  6.6]
[ 3.3  9.9]]

1 个答案:

答案 0 :(得分:0)

以下是sklearn for SVR的代码

$id = $_POST['id'];

看看这块代码是否适合你。