我在Python中编写了一个基于this tutorial的3层神经网络,使用 -1 for rock 播放Rock,Paper,Scissors和样本数据, 0表示纸张, 1表示剪刀,以及类似于教程中的数组。我的功能似乎是每次跑步都陷入相对最小值,我正在寻找一种方法来解决这个问题。该计划如下。
#math module
import numpy as np
#sigmoid function converts numbers to percentages(between 0 and 1)
def nonlin(x, deriv = False):
if (deriv == True): #sigmoid derivative is just
return x*(1-x)#output * (output - 1)
return 1/(1+np.exp(-x)) #print the sigmoid function
#input data: using MOCK RPS DATA, -1:ROCK, 0:PAPER, 1:SCISSORS
input_data = np.array([[1, 1, 1],
[0, 0, 0],
[-1, -1, -1],
[-1, 1, -1]])
#also for training
output_data = np.array([[1],
[0],
[-1],
[1]])
#random numbers to not get stuck in local minima for fitness
np.random.seed(1)
#create random weights to be trained in loop
firstLayer_weights = 2*np.random.random((3, 4)) - 1 #size of matrix
secondLayer_weights = 2*np.random.random((4, 1)) - 1
for value in xrange(60000): # loops through training
#pass input through weights to output: three layers
layer0 = input_data
#layer1 takes dot product of the input and weight matrices, then maps them to sigmoid function
layer1 = nonlin(np.dot(layer0, firstLayer_weights))
#layer2 takes dot product of layer1 result and weight matrices, then maps the to sigmoid function
layer2 = nonlin(np.dot(layer1, secondLayer_weights))
#check computer predicted result against actual data
layer2_error = output_data - layer2
#if value is a factor of 10,000, so six times (out of 60,000),
#print how far off the predicted value was from the data
if value % 10000 == 0:
print "Error:" + str(np.mean(np.abs(layer2_error))) #average error
#find out how much to re-adjust weights based on how far off and how confident the estimate
layer2_change = layer2_error * nonlin(layer2, deriv = True)
#find out how layer1 led to error in layer 2, to attack root of problem
layer1_error = layer2_change.dot(secondLayer_weights.T)
#^^sends error on layer2 backwards across weights(dividing) to find original error: BACKPROPAGATION
#same thing as layer2 change, change based on accuracy and confidence
layer1_change = layer1_error * nonlin(layer1, deriv=True)
#modify weights based on multiplication of error between two layers
secondLayer_weights = secondLayer_weights + layer1.T.dot(layer2_change)
firstLayer_weights = firstLayer_weights + layer0.T.dot(layer1_change)
如您所见,本节是涉及的数据:
input_data = np.array([[1, 1, 1],
[0, 0, 0],
[-1, -1, -1],
[-1, 1, -1]])
#also for training
output_data = np.array([[1],
[0],
[-1],
[1]])
权重在这里:
firstLayer_weights = 2*np.random.random((3, 4)) - 1 #size of matrix
secondLayer_weights = 2*np.random.random((4, 1)) - 1
似乎在第一代人之后,权重在剩余的编译中以最低的效率进行校正,这使我相信他们已达到相对最小值,如下所示:
解决此问题的快速有效方法是什么?
答案 0 :(得分:5)
您的网络存在的一个问题是输出(layer2
元素的值)只能在0和1之间变化,因为您使用了sigmoid非线性。由于您的四个目标值之一为-1且最接近的可能预测为0,因此始终存在至少25%的错误。以下是一些建议:
对输出使用单热编码:即有三个输出节点 - 每个ROCK
,PAPER
和SCISSORS
一个 - 并训练网络进行计算这些输出的概率分布(通常使用softmax和交叉熵损失)。
使网络的输出层成为线性层(应用权重和偏差,但不是非线性)。添加另一个图层,或从当前输出图层中删除非线性。
您可以尝试的其他事项,但不太可能可靠地工作,因为您实际上处理的是分类数据而不是连续输出:
缩放数据,使训练数据中的所有输出都在0到1之间。
使用产生介于-1和1之间的值的非线性(例如tanh)。
答案 1 :(得分:0)
每次迭代后为重量添加一点噪音。这将使您的程序超出当地最低要求并进行改进(如果可能)。有很多关于此的文献。请查看http://paper.ijcsns.org/07_book/200705/20070513.pdf处的示例。