Python中最长的子序列(For vs While循环)

时间:2016-01-02 00:57:21

标签: python for-loop while-loop time-complexity dynamic-programming

我正在解决这个我们应该找到longest increasing sub-sequence in a list or array的leetcode问题link。我用问题解决了问题 两种方法。

  • 首先使用while循环
  • 使用嵌套的for循环
  

即使(i,j)或循环的值完全相同,但是   较长的输入,while loop程序需要更多时间   比for计划。我不确定为什么?

FOR LOOP

import time
start_time = time.time()

class Solution(object):
# using dP
    def lengthOfLIS1(self, nums):
        """
        :type nums: List[int]
        :rtype: int
        """
        if not nums:
            return 0
        dp = [1] * len(nums)
        for i in range(1, len(nums)):
            for j in range(i):
                if nums[i] > nums[j]:
                    dp[i] = max(dp[i], dp[j] + 1)
        return max(dp)


print Solution().lengthOfLIS1([1] * 1249 + [101] + [1] * 1250)

print("--- %s seconds ---" % (time.time() - start_time))

输出

2
--- 0.240112066269 seconds ---

WHILE LOOP

# This problem an be done in O(n*n)
import time
start_time = time.time()

class Solution(object):
    def lengthOfLIS(self, nums):
        """
        :type nums: List[int]
        :rtype: int
        """
        if not nums:
            return []
        elif len(nums) == 1:
            return nums

        size = len(nums)
        subsequence_array = [1] * size
        i, j, max_value = 0, 1, 1
        while j < size:
            if nums[j] > nums[i]:
                subsequence_array[j] = max(subsequence_array[j], subsequence_array[i] + 1)
                if max_value < subsequence_array[j]:
                    max_value = subsequence_array[j]
                i += 1
                if j == i:
                    i = 0
                    j += 1
            else:
                i += 1
                if i == j:
                    j += 1
                    i = 0

        return max_value

print Solution().lengthOfLIS([1] * 1249 + [101] + [1] * 1250)

print("--- %s seconds ---" % (time.time() - start_time))

输出

2
--- 0.331799030304 seconds ---

有人可以解释为什么while loop花费的时间比for loop更多,即使i and j的循环几乎相同吗?非常感谢你的回答。

1 个答案:

答案 0 :(得分:3)

查看字节码

while循环必须执行更多操作。 Python正在执行字节码。因此,字节码指令的数量和种类可以提示您实际发生的事情。

模块dis中的函数dis

import dis

可以显示bytcode。

首先是range解决方案:

dis.dis(SolutionRange)
Disassembly of lengthOfLIS1:
  8           0 LOAD_FAST                1 (nums)
              3 POP_JUMP_IF_TRUE        10

  9           6 LOAD_CONST               1 (0)
              9 RETURN_VALUE

 10     >>   10 LOAD_CONST               2 (1)
             13 BUILD_LIST               1
             16 LOAD_GLOBAL              0 (len)
             19 LOAD_FAST                1 (nums)
             22 CALL_FUNCTION            1 (1 positional, 0 keyword pair)
             25 BINARY_MULTIPLY
             26 STORE_FAST               2 (dp)

 11          29 SETUP_LOOP             103 (to 135)
             32 LOAD_GLOBAL              1 (range)
             35 LOAD_CONST               2 (1)
             38 LOAD_GLOBAL              0 (len)
             41 LOAD_FAST                1 (nums)
             44 CALL_FUNCTION            1 (1 positional, 0 keyword pair)
             47 CALL_FUNCTION            2 (2 positional, 0 keyword pair)
             50 GET_ITER
        >>   51 FOR_ITER                80 (to 134)
             54 STORE_FAST               3 (i)

 12          57 SETUP_LOOP              71 (to 131)
             60 LOAD_GLOBAL              1 (range)
             63 LOAD_FAST                3 (i)
             66 CALL_FUNCTION            1 (1 positional, 0 keyword pair)
             69 GET_ITER
        >>   70 FOR_ITER                57 (to 130)
             73 STORE_FAST               4 (j)

 13          76 LOAD_FAST                1 (nums)
             79 LOAD_FAST                3 (i)
             82 BINARY_SUBSCR
             83 LOAD_FAST                1 (nums)
             86 LOAD_FAST                4 (j)
             89 BINARY_SUBSCR
             90 COMPARE_OP               4 (>)
             93 POP_JUMP_IF_FALSE       70

 14          96 LOAD_GLOBAL              2 (max)
             99 LOAD_FAST                2 (dp)
            102 LOAD_FAST                3 (i)
            105 BINARY_SUBSCR
            106 LOAD_FAST                2 (dp)
            109 LOAD_FAST                4 (j)
            112 BINARY_SUBSCR
            113 LOAD_CONST               2 (1)
            116 BINARY_ADD
            117 CALL_FUNCTION            2 (2 positional, 0 keyword pair)
            120 LOAD_FAST                2 (dp)
            123 LOAD_FAST                3 (i)
            126 STORE_SUBSCR
            127 JUMP_ABSOLUTE           70
        >>  130 POP_BLOCK
        >>  131 JUMP_ABSOLUTE           51
        >>  134 POP_BLOCK

 15     >>  135 LOAD_GLOBAL              2 (max)
            138 LOAD_FAST                2 (dp)
            141 CALL_FUNCTION            1 (1 positional, 0 keyword pair)
            144 RETURN_VALUE

现在是while解决方案:

dis.dis(SolutionWhile)

Disassembly of lengthOfLIS:
  7           0 LOAD_FAST                1 (nums)
              3 POP_JUMP_IF_TRUE        10

  8           6 BUILD_LIST               0
              9 RETURN_VALUE

  9     >>   10 LOAD_GLOBAL              0 (len)
             13 LOAD_FAST                1 (nums)
             16 CALL_FUNCTION            1 (1 positional, 0 keyword pair)
             19 LOAD_CONST               1 (1)
             22 COMPARE_OP               2 (==)
             25 POP_JUMP_IF_FALSE       32

 10          28 LOAD_FAST                1 (nums)
             31 RETURN_VALUE

 12     >>   32 LOAD_GLOBAL              0 (len)
             35 LOAD_FAST                1 (nums)
             38 CALL_FUNCTION            1 (1 positional, 0 keyword pair)
             41 STORE_FAST               2 (size)

 13          44 LOAD_CONST               1 (1)
             47 BUILD_LIST               1
             50 LOAD_FAST                2 (size)
             53 BINARY_MULTIPLY
             54 STORE_FAST               3 (subsequence_array)

 14          57 LOAD_CONST               3 ((0, 1, 1))
             60 UNPACK_SEQUENCE          3
             63 STORE_FAST               4 (i)
             66 STORE_FAST               5 (j)
             69 STORE_FAST               6 (max_value)

 15          72 SETUP_LOOP             172 (to 247)
        >>   75 LOAD_FAST                5 (j)
             78 LOAD_FAST                2 (size)
             81 COMPARE_OP               0 (<)
             84 POP_JUMP_IF_FALSE      246

 16          87 LOAD_FAST                1 (nums)
             90 LOAD_FAST                5 (j)
             93 BINARY_SUBSCR
             94 LOAD_FAST                1 (nums)
             97 LOAD_FAST                4 (i)
            100 BINARY_SUBSCR
            101 COMPARE_OP               4 (>)
            104 POP_JUMP_IF_FALSE      205

 17         107 LOAD_GLOBAL              1 (max)
            110 LOAD_FAST                3 (subsequence_array)
            113 LOAD_FAST                5 (j)
            116 BINARY_SUBSCR
            117 LOAD_FAST                3 (subsequence_array)
            120 LOAD_FAST                4 (i)
            123 BINARY_SUBSCR
            124 LOAD_CONST               1 (1)
            127 BINARY_ADD
            128 CALL_FUNCTION            2 (2 positional, 0 keyword pair)
            131 LOAD_FAST                3 (subsequence_array)
            134 LOAD_FAST                5 (j)
            137 STORE_SUBSCR

 18         138 LOAD_FAST                6 (max_value)
            141 LOAD_FAST                3 (subsequence_array)
            144 LOAD_FAST                5 (j)
            147 BINARY_SUBSCR
            148 COMPARE_OP               0 (<)
            151 POP_JUMP_IF_FALSE      164

 19         154 LOAD_FAST                3 (subsequence_array)
            157 LOAD_FAST                5 (j)
            160 BINARY_SUBSCR
            161 STORE_FAST               6 (max_value)

 20     >>  164 LOAD_FAST                4 (i)
            167 LOAD_CONST               1 (1)
            170 INPLACE_ADD
            171 STORE_FAST               4 (i)

 21         174 LOAD_FAST                5 (j)
            177 LOAD_FAST                4 (i)
            180 COMPARE_OP               2 (==)
            183 POP_JUMP_IF_FALSE      243

 22         186 LOAD_CONST               2 (0)
            189 STORE_FAST               4 (i)

 23         192 LOAD_FAST                5 (j)
            195 LOAD_CONST               1 (1)
            198 INPLACE_ADD
            199 STORE_FAST               5 (j)
            202 JUMP_ABSOLUTE           75

 25     >>  205 LOAD_FAST                4 (i)
            208 LOAD_CONST               1 (1)
            211 INPLACE_ADD
            212 STORE_FAST               4 (i)

 26         215 LOAD_FAST                4 (i)
            218 LOAD_FAST                5 (j)
            221 COMPARE_OP               2 (==)
            224 POP_JUMP_IF_FALSE       75

 27         227 LOAD_FAST                5 (j)
            230 LOAD_CONST               1 (1)
            233 INPLACE_ADD
            234 STORE_FAST               5 (j)

 28         237 LOAD_CONST               2 (0)
            240 STORE_FAST               4 (i)
        >>  243 JUMP_ABSOLUTE           75
        >>  246 POP_BLOCK

 30     >>  247 LOAD_FAST                6 (max_value)
            250 RETURN_VALUE

while解决方案中还有更多的字节码行。这表明速度较慢。当然,并非所有字节码指令都花费相同的时间,需要更深入地分析以获得更加定量的答案。

一切都是对象

在Python中,一切都是对象。因此,这个:

>>> 1 + 1
2

实际上是这样做的:

>>> 1 .__add__(1)
2

因此,简单地添加两个整数就需要调用方法__add__()。这样的电话相对较慢。

例如,我们有这个清单:

L = list(range(int(1e6)))

内置函数sum()的总和:

%%timeit
sum(L)

100 loops, best of 3: 15.9 ms per loop

比写一个循环要快得多:

%%timeit
sum_ = 0
for x in L:
    sum_ += x

10 loops, best of 3: 95.7 ms per loop

内置的sum使用优化来避免因为一切都是对象的概念导致的一些开销。

while解决方案包含许多操作,例如j += 1。仅这些就增加了可测量的执行时间。