单层神经网络

时间:2010-08-11 06:03:00

标签: matlab artificial-intelligence classification perceptron

对于单层神经网络的实现,我有两个数据文件。

In:
    0.832 64.643
    0.818 78.843

Out:
    0 0 1
    0 0 1

以上是2个数据文件的格式。

对应输入所属的特定类的目标输出为“1”,其余2个输出的目标输出为“0”。

问题如下:

  

你的单层神经网络会   找到A(3乘2矩阵)和b(3乘1)   矢量)在Y = A * X + b,其中Y是[C1,   C2,C3]'和X是[x1,x2]'。

     

用一个解决上面的问题   神经网络,我们可以重新编写   方程如下:Y = A'* X'其中   A'= [A b](3乘3矩阵),X'是   [x1,x2,1]'

     

现在你可以使用神经网络了   三个输入节点(一个用于x1,x2和   1个)和3个输出(C1,   C2,C3)。

     

结果9(因为我们有9   3个输入和3个之间的连接   输出)权重相当于   A'矩阵的元素。

基本上,我正在尝试做这样的事情,但它不起作用:

function neuralNetwork   
    load X_Q2.data
    load T_Q2.data
    x = X_Q2(:,1);
    y = X_Q2(:,2);

    learningrate = 0.2;
    max_iteration = 50;

    % initialize parameters
    count = length(x);
    weights = rand(1,3); % creates a 1-by-3 array with random weights
    globalerror = 0;
    iter = 0;
    while globalerror ~= 0 && iter <= max_iteration
        iter = iter + 1;
        globalerror = 0;
        for p = 1:count
            output = calculateOutput(weights,x(p),y(p));
            localerror = T_Q2(p) - output
            weights(1)= weights(1) + learningrate *localerror*x(p);
            weights(2)= weights(1) + learningrate *localerror*y(p);
            weights(3)= weights(1) + learningrate *localerror;
            globalerror = globalerror + (localerror*localerror);
        end 
    end 

我在其他文件中编写此函数,并在之前的代码中调用它。

function result = calculateOutput (weights, x, y)
    s = x * weights(1) + y * weights(2) + weights(3);
    if s >= 0
        result = 1;
    else
        result = -1;
    end

1 个答案:

答案 0 :(得分:223)

我可以发现代码中的一些问题。主要问题是目标是multi-class(不是binary),因此您需要为每个类使用一个输出节点(称为1-of-N encoding),或者使用单个输出节点使用不同的activation function(能够超过二进制输出-1/1或0/1的东西)

在下面的解决方案中,perceptron具有以下结构:

perceptron_strucutre

%# load your data
input = [
    0.832 64.643
    0.818 78.843
    1.776 45.049
    0.597 88.302
    1.412 63.458
];
target = [
    0 0 1
    0 0 1
    0 1 0
    0 0 1
    0 0 1
];

%# parameters of the learning algorithm
LEARNING_RATE = 0.1;
MAX_ITERATIONS = 100;
MIN_ERROR = 1e-4;

[numInst numDims] = size(input);
numClasses = size(target,2);

%# three output nodes connected to two-dimensional input nodes + biases
weights = randn(numClasses, numDims+1);

isDone = false;               %# termination flag
iter = 0;                     %# iterations counter
while ~isDone
    iter = iter + 1;

    %# for each instance
    err = zeros(numInst,numClasses);
    for i=1:numInst
        %# compute output: Y = W*X + b, then apply threshold activation
        output = ( weights * [input(i,:)';1] >= 0 );                       %#'

        %# error: err = T - Y
        err(i,:) = target(i,:)' - output;                                  %#'

        %# update weights (delta rule): delta(W) = alpha*(T-Y)*X
        weights = weights + LEARNING_RATE * err(i,:)' * [input(i,:) 1];    %#'
    end

    %# Root mean squared error
    rmse = sqrt(sum(err.^2,1)/numInst);
    fprintf(['Iteration %d: ' repmat('%f ',1,numClasses) '\n'], iter, rmse);

    %# termination criteria
    if ( iter >= MAX_ITERATIONS || all(rmse < MIN_ERROR) )
        isDone = true;
    end
end

%# plot points and one-against-all decision boundaries
[~,group] = max(target,[],2);                     %# actual class of instances
gscatter(input(:,1), input(:,2), group), hold on
xLimits = get(gca,'xlim'); yLimits = get(gca,'ylim');
for i=1:numClasses
    ezplot(sprintf('%f*x + %f*y + %f', weights(i,:)), xLimits, yLimits)
end
title('Perceptron decision boundaries')
hold off

您提供的五个样本的培训结果:

Iteration 1: 0.447214 0.632456 0.632456 
Iteration 2: 0.000000 0.447214 0.447214 
...
Iteration 49: 0.000000 0.447214 0.447214 
Iteration 50: 0.000000 0.632456 0.000000 
Iteration 51: 0.000000 0.447214 0.000000 
Iteration 52: 0.000000 0.000000 0.000000 

plot

请注意,上例中使用的数据仅包含5个样本。如果每个班级都有更多的培训实例,您将获得更有意义的结果。