我想知道在Java 8中使用流来执行以下操作是否有更简洁的方法:
public static double[] multiply(double[][] matrix, double[] vector) {
int rows = matrix.length;
int columns = matrix[0].length;
double[] result = new double[rows];
for (int row = 0; row < rows; row++) {
double sum = 0;
for (int column = 0; column < columns; column++) {
sum += matrix[row][column]
* vector[column];
}
result[row] = sum;
}
return result;
}
进行编辑。我收到了一个非常好的答案,但是性能比旧的实现慢了大约10倍,所以我在这里添加测试代码,以防有人想要调查它:
@Test
public void profile() {
long start;
long stop;
int tenmillion = 10000000;
double[] vector = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };
double[][] matrix = new double[tenmillion][10];
for (int i = 0; i < tenmillion; i++) {
matrix[i] = vector.clone();
}
start = System.currentTimeMillis();
multiply(matrix, vector);
stop = System.currentTimeMillis();
}
答案 0 :(得分:7)
使用Stream的直接方式如下:
public static double[] multiply(double[][] matrix, double[] vector) {
return Arrays.stream(matrix)
.mapToDouble(row ->
IntStream.range(0, row.length)
.mapToDouble(col -> row[col] * vector[col])
.sum()
).toArray();
}
这将为矩阵的每一行(Stream<double[]>
)创建一个Stream,然后将每一行映射到使用vector
数组计算产品的double值。
我们必须在索引上使用Stream来计算产品,因为很遗憾没有可以将两个Streams压缩在一起的内置工具。
答案 1 :(得分:2)
衡量绩效的方式对于衡量绩效并不是非常可靠,手动编写微基准通常不是一个好主意。例如,在编译代码时,JVM可能会选择更改执行顺序,并且可能无法将启动和停止变量分配到您希望分配的位置,从而在测量中产生意外结果。预热JVM以及让JIT编译器进行所有优化也非常重要。 GC还可以在引入应用程序吞吐量和响应时间的变化方面发挥重要作用。我强烈建议使用JMH和Caliper等专用工具进行微基准测试。
我还用JVM预热,随机数据集和更多迭代次数编写了一些基准测试代码。事实证明,Java 8流提供了更好的结果。
/**
*
*/
public class MatrixMultiplicationBenchmark {
private static AtomicLong start = new AtomicLong();
private static AtomicLong stop = new AtomicLong();
private static Random random = new Random();
/**
* Main method that warms-up each implementation and then runs the benchmark.
*
* @param args main class args
*/
public static void main(String[] args) {
// Warming up with more iterations and smaller data set
System.out.println("Warming up...");
IntStream.range(0, 10_000_000).forEach(i -> run(10, MatrixMultiplicationBenchmark::multiplyWithStreams));
IntStream.range(0, 10_000_000).forEach(i -> run(10, MatrixMultiplicationBenchmark::multiplyWithForLoops));
// Running with less iterations and larger data set
startWatch("Running MatrixMultiplicationBenchmark::multiplyWithForLoops...");
IntStream.range(0, 10).forEach(i -> run(10_000_000, MatrixMultiplicationBenchmark::multiplyWithForLoops));
endWatch("MatrixMultiplicationBenchmark::multiplyWithForLoops");
startWatch("Running MatrixMultiplicationBenchmark::multiplyWithStreams...");
IntStream.range(0, 10).forEach(i -> run(10_000_000, MatrixMultiplicationBenchmark::multiplyWithStreams));
endWatch("MatrixMultiplicationBenchmark::multiplyWithStreams");
}
/**
* Creates the random matrix and vector and applies them in the given implementation as BiFunction object.
*
* @param multiplyImpl implementation to use.
*/
public static void run(int size, BiFunction<double[][], double[], double[]> multiplyImpl) {
// creating random matrix and vector
double[][] matrix = new double[size][10];
double[] vector = random.doubles(10, 0.0, 10.0).toArray();
IntStream.range(0, size).forEach(i -> matrix[i] = random.doubles(10, 0.0, 10.0).toArray());
// applying matrix and vector to the given implementation. Returned value should not be ignored in test cases.
double[] result = multiplyImpl.apply(matrix, vector);
}
/**
* Multiplies the given vector and matrix using Java 8 streams.
*
* @param matrix the matrix
* @param vector the vector to multiply
*
* @return result after multiplication.
*/
public static double[] multiplyWithStreams(final double[][] matrix, final double[] vector) {
final int rows = matrix.length;
final int columns = matrix[0].length;
return IntStream.range(0, rows)
.mapToDouble(row -> IntStream.range(0, columns)
.mapToDouble(col -> matrix[row][col] * vector[col])
.sum()).toArray();
}
/**
* Multiplies the given vector and matrix using vanilla for loops.
*
* @param matrix the matrix
* @param vector the vector to multiply
*
* @return result after multiplication.
*/
public static double[] multiplyWithForLoops(double[][] matrix, double[] vector) {
int rows = matrix.length;
int columns = matrix[0].length;
double[] result = new double[rows];
for (int row = 0; row < rows; row++) {
double sum = 0;
for (int column = 0; column < columns; column++) {
sum += matrix[row][column] * vector[column];
}
result[row] = sum;
}
return result;
}
private static void startWatch(String label) {
System.out.println(label);
start.set(System.currentTimeMillis());
}
private static void endWatch(String label) {
stop.set(System.currentTimeMillis());
System.out.println(label + " took " + ((stop.longValue() - start.longValue()) / 1000) + "s");
}
}
这是输出
Warming up...
Running MatrixMultiplicationBenchmark::multiplyWithForLoops...
MatrixMultiplicationBenchmark::multiplyWithForLoops took 100s
Running MatrixMultiplicationBenchmark::multiplyWithStreams...
MatrixMultiplicationBenchmark::multiplyWithStreams took 89s