我有一个数字列表,例如
numbers = [1, 2, 3, 7, 7, 9, 10]
如您所见,此列表中的数字可能会出现多次。
我需要获得具有给定总和的这些数字的所有组合,例如10
。
组合中的项目可能不会重复,但numbers
中的每个项目都必须被唯一处理,这意味着,例如列表中的两个7
表示具有相同值的不同项目。
订单不重要,因此[1, 9]
和[9, 1]
是相同的组合。
组合没有长度限制,[10]
与[1, 2, 7]
一样有效。
如何创建符合上述条件的所有组合的列表?
在此示例中,它将是[[1,2,7], [1,2,7], [1,9], [3,7], [3,7], [10]]
答案 0 :(得分:16)
您可以使用itertools迭代每个可能大小的每个组合,并过滤掉所有不总和为10的组合:
import itertools
numbers = [1, 2, 3, 7, 7, 9, 10]
result = [seq for i in range(len(numbers), 0, -1) for seq in itertools.combinations(numbers, i) if sum(seq) == 10]
print result
结果:
[(1, 2, 7), (1, 2, 7), (1, 9), (3, 7), (3, 7), (10,)]
不幸的是,这类似于O(2 ^ N)的复杂性,因此它不适合大于20个元素的输入列表。
答案 1 :(得分:9)
solution @kgoodrick offered很棒,但我认为它作为生成器更有用:
def subset_sum(numbers, target, partial=[], partial_sum=0):
if partial_sum == target:
yield partial
if partial_sum >= target:
return
for i, n in enumerate(numbers):
remaining = numbers[i + 1:]
yield from subset_sum(remaining, target, partial + [n], partial_sum + n)
list(subset_sum([1, 2, 3, 7, 7, 9, 10], 10))
会产生[[1, 2, 7], [1, 2, 7], [1, 9], [3, 7], [3, 7], [10]]
。
答案 2 :(得分:7)
之前已经问过这个问题,请参阅@msalvadores回答here。我更新了在python 3中运行的python代码:
def subset_sum(numbers, target, partial=[]):
s = sum(partial)
# check if the partial sum is equals to target
if s == target:
print("sum(%s)=%s" % (partial, target))
if s >= target:
return # if we reach the number why bother to continue
for i in range(len(numbers)):
n = numbers[i]
remaining = numbers[i + 1:]
subset_sum(remaining, target, partial + [n])
if __name__ == "__main__":
subset_sum([3, 3, 9, 8, 4, 5, 7, 10], 15)
# Outputs:
# sum([3, 8, 4])=15
# sum([3, 5, 7])=15
# sum([8, 7])=15
# sum([5, 10])=15
答案 3 :(得分:2)
@qasimalbaqali
这可能不正是该帖子所要查找的内容,但是如果您想这样做
查找一个数字范围[lst]的所有组合,其中每个lst包含N个元素,并且总计为K:使用此元素:
# Python3 program to find all pairs in a list of integers with given sum
from itertools import combinations
def findPairs(lst, K, N):
return [pair for pair in combinations(lst, N) if sum(pair) == K]
#monthly cost range; unique numbers
lst = list(range(10, 30))
#sum of annual revenue per machine/customer
K = 200
#number of months (12 - 9 = num months free)
N = 9
print('Possible monthly subscription costs that still equate to $200 per year:')
#print(findPairs(lst, K, N))
findPairs(lst,K,N)
结果:
Possible monthly subscription costs that still equate to $200 per year:
Out[27]:
[(10, 11, 20, 24, 25, 26, 27, 28, 29),
(10, 11, 21, 23, 25, 26, 27, 28, 29),
(10, 11, 22, 23, 24, 26, 27, 28, 29),
其背后的想法/问题是“如果我们给x的月数免费但仍达到收入目标,我们每月可以收取多少费用”。
答案 4 :(得分:0)
这有效...
from itertools import combinations
def SumTheList(thelist, target):
arr = []
p = []
if len(thelist) > 0:
for r in range(0,len(thelist)+1):
arr += list(combinations(thelist, r))
for item in arr:
if sum(item) == target:
p.append(item)
return p