opencv用文本二值化图像

时间:2015-12-21 14:31:17

标签: c++ opencv image-processing

我需要用文本二值化图像..它工作得很好但在某些情况下输出是空的(白色图像)

/*
 *  Compile
 *  # g++ txtbin.cpp -o txtbin `pkg-config opencv --cflags --libs`
 *
 *  Run
 *  # ./txtbin input.jpg output.png
 */

#include "string"
#include "fstream"
#include "/usr/include/opencv2/opencv.hpp"
#include "/usr/include/boost/tuple/tuple.hpp"

using namespace std;
using namespace cv;
using namespace boost;

void CalcBlockMeanVariance(Mat& Img, Mat& Res, float blockSide=21, float contrast=0.01){
    /*
     *  blockSide: set greater for larger fonts in image
     *  contrast: set smaller for lower contrast image
     */

    Mat I;
    Img.convertTo(I, CV_32FC1);
    Res = Mat::zeros(Img.rows / blockSide, Img.cols / blockSide, CV_32FC1);
    Mat inpaintmask;
    Mat patch;
    Mat smallImg;
    Scalar m, s;

    for(int i = 0; i < Img.rows - blockSide; i += blockSide){
        for(int j = 0; j < Img.cols - blockSide; j += blockSide){
            patch = I(Range(i, i + blockSide + 1), Range(j, j + blockSide + 1));
            meanStdDev(patch, m, s);

            if(s[0] > contrast){
                Res.at<float>(i / blockSide, j / blockSide) = m[0];
            }
            else{
                Res.at<float>(i / blockSide, j / blockSide) = 0;
            }
        }
    }

    resize(I, smallImg, Res.size());

    threshold(Res, inpaintmask, 0.02, 1.0, THRESH_BINARY);

    Mat inpainted;
    smallImg.convertTo(smallImg, CV_8UC1, 255);

    inpaintmask.convertTo(inpaintmask, CV_8UC1);
    inpaint(smallImg, inpaintmask, inpainted, 5, INPAINT_TELEA);

    resize(inpainted, Res, Img.size());
    Res.convertTo(Res, CV_32FC1, 1.0 / 255.0);
}

tuple<int, int, int, int> detect_text_box(string input, Mat& res, bool draw_contours=false){
    Mat large = imread(input);

    bool test_output = false;

    int
        top = large.rows,
        bottom = 0,
        left = large.cols,
        right = 0;

    int
        rect_bottom,
        rect_right;

    Mat rgb;
    // downsample and use it for processing
    pyrDown(large, rgb);
    Mat small;
    cvtColor(rgb, small, CV_BGR2GRAY);
    // morphological gradient
    Mat grad;
    Mat morphKernel = getStructuringElement(MORPH_ELLIPSE, Size(3, 3));
    morphologyEx(small, grad, MORPH_GRADIENT, morphKernel);
    // binarize
    Mat bw;
    threshold(grad, bw, 0.0, 255.0, THRESH_BINARY | THRESH_OTSU);
    // connect horizontally oriented regions
    Mat connected;
    morphKernel = getStructuringElement(MORPH_RECT, Size(9, 1));
    morphologyEx(bw, connected, MORPH_CLOSE, morphKernel);
    // find contours
    Mat mask = Mat::zeros(bw.size(), CV_8UC1);
    vector<vector<Point> > contours;
    vector<Vec4i> hierarchy;
    findContours(connected, contours, hierarchy, CV_RETR_CCOMP, CV_CHAIN_APPROX_SIMPLE, Point(0, 0));
    // filter contours
    for(int idx = 0; idx >= 0; idx = hierarchy[idx][0]){
        Rect rect = boundingRect(contours[idx]);
        Mat maskROI(mask, rect);
        maskROI = Scalar(0, 0, 0);
        // fill the contour
        drawContours(mask, contours, idx, Scalar(255, 255, 255), CV_FILLED);
        // ratio of non-zero pixels in the filled region
        double r = (double)countNonZero(maskROI) / (rect.width * rect.height);

        // assume at least 45% of the area is filled if it contains text
        if (r > 0.45 && 
        (rect.height > 8 && rect.width > 8) // constraints on region size
        // these two conditions alone are not very robust. better to use something 
        //like the number of significant peaks in a horizontal projection as a third condition
        ){
            if(draw_contours){
                rectangle(res, Rect(rect.x * 2, rect.y * 2, rect.width * 2, rect.height * 2), Scalar(0, 255, 0), 2);
            }

            if(test_output){
                rectangle(rgb, rect, Scalar(0, 255, 0), 2);
            }

            if(rect.y < top){
                top = rect.y;
            }
            rect_bottom = rect.y + rect.height;
            if(rect_bottom > bottom){
                bottom = rect_bottom;
            }
            if(rect.x < left){
                left = rect.x;
            }
            rect_right = rect.x + rect.width;
            if(rect_right > right){
                right = rect_right;
            }
        }
    }

    if(draw_contours){
        rectangle(res, Point(left * 2, top * 2), Point(right * 2, bottom * 2), Scalar(0, 0, 255), 2);
    }

    if(test_output){
        rectangle(rgb, Point(left, top), Point(right, bottom), Scalar(0, 0, 255), 2);
        imwrite(string("test_text_contours.jpg"), rgb);
    }

    return make_tuple(left * 2, top * 2, (right - left) * 2, (bottom - top) * 2);
}

int main(int argc, char* argv[]){
    string input;
    string output = "output.png";

    int
        width = 0,
        height = 0;

    bool
        crop = false,
        draw = false;

    float margin = 0;

    //  Return error if arguments are missing
    if(argc < 3){
        cerr << "\nUsage: txtbin input [options] output\n\n"
            "Options:\n"
            "\t-w <number>          -- set max width (keeps aspect ratio)\n"
            "\t-h <number>          -- set max height (keeps aspect ratio)\n"
            "\t-c                   -- crop text content contour\n"
            "\t-m <number>          -- add margins (number in %)\n"
            "\t-d                   -- draw text content contours (debugging)\n" << endl;
        return 1;
    }

    //  Parse arguments
    for(int i = 1; i < argc; i++){
        if(i == 1){
            input = string(argv[i]);

            //  Return error if input file is invalid
            ifstream stream(input.c_str());
            if(!stream.good()){
                cerr << "Error: Input file is invalid!" << endl;
                return 1;
            }
        }
        else if(string(argv[i]) == "-w"){
            width = atoi(argv[++i]);
        }
        else if(string(argv[i]) == "-h"){
            height = atoi(argv[++i]);
        }
        else if(string(argv[i]) == "-c"){
            crop = true;
        }
        else if(string(argv[i]) == "-m"){
            margin = atoi(argv[++i]);
        }
        else if(string(argv[i]) == "-d"){
            draw = true;
        }
        else if(i == argc - 1){
            output = string(argv[i]);
        }
    }

    Mat Img = imread(input, CV_LOAD_IMAGE_GRAYSCALE);
    Mat res;
    Img.convertTo(Img, CV_32FC1, 1.0 / 255.0);
    CalcBlockMeanVariance(Img, res);
    res = 1.0 - res;
    res = Img + res;
    threshold(res, res, 0.85, 1, THRESH_BINARY);

    int
        txt_x,
        txt_y,
        txt_width,
        txt_height;

    if(crop || draw){
        tie(txt_x, txt_y, txt_width, txt_height) = detect_text_box(input, res, draw);
    }

    if(crop){
        //res = res(Rect(txt_x, txt_y, txt_width, txt_height)).clone();
        res = res(Rect(txt_x, txt_y, txt_width, txt_height));
    }

    if(margin){
        int border = res.cols * margin / 100;
        copyMakeBorder(res, res, border, border, border, border, BORDER_CONSTANT, Scalar(255, 255, 255));
    }

    float
        width_input = res.cols,
        height_input = res.rows;

    bool resized = false;

    //  Downscale image
    if(width > 0 && width_input > width){
        float scale = width_input / width;
        width_input /= scale;
        height_input /= scale;
        resized = true;
    }
    if(height > 0 && height_input > height){
        float scale = height_input / height;
        width_input /= scale;
        height_input /= scale;
        resized = true;
    }
    if(resized){
        resize(res, res, Size(round(width_input), round(height_input)));
    }

    imwrite(output, res * 255);

    return 0;
}

enter image description here

enter image description here

enter image description here

enter image description here

enter image description here

enter image description here

enter image description here

enter image description here

1 个答案:

答案 0 :(得分:3)

好的:) 将blockSide设置为较小(例如7),它将为您提供结果图像,如下所示。它取决于字体大小,较小的字体需要较小的块大小,否则文本将被过滤掉,你会得到空图像。

#include <iostream>
#include <vector>
#include <stdio.h>
#include <stdarg.h>
#include "/usr/include/opencv2/opencv.hpp"
#include "fstream"
#include "iostream"
using namespace std;
using namespace cv;

void CalcBlockMeanVariance(Mat& Img,Mat& Res,float blockSide=9) // blockSide - the parameter (set greater for larger font on image)
{
    Mat I;
    Img.convertTo(I,CV_32FC1);
    Res=Mat::zeros(Img.rows/blockSide,Img.cols/blockSide,CV_32FC1);
    Mat inpaintmask;
    Mat patch;
    Mat smallImg;
    Scalar m,s;

    for(int i=0;i<Img.rows-blockSide;i+=blockSide)
    {       
        for (int j=0;j<Img.cols-blockSide;j+=blockSide)
        {
            patch=I(Range(i,i+blockSide+1),Range(j,j+blockSide+1));
            cv::meanStdDev(patch,m,s);
            if(s[0]>0.01) // Thresholding parameter (set smaller for lower contrast image)
            {
                Res.at<float>(i/blockSide,j/blockSide)=m[0];
            }else
            {
                Res.at<float>(i/blockSide,j/blockSide)=0;
            }           
        }
    }

    cv::resize(I,smallImg,Res.size());

    cv::threshold(Res,inpaintmask,0.02,1.0,cv::THRESH_BINARY);

    Mat inpainted;
    smallImg.convertTo(smallImg,CV_8UC1,255);

    inpaintmask.convertTo(inpaintmask,CV_8UC1);
    inpaint(smallImg, inpaintmask, inpainted, 5, INPAINT_TELEA);

    cv::resize(inpainted,Res,Img.size());
    Res.convertTo(Res,CV_32FC1,1.0/255.0);

}

int main( int argc, char** argv )
{
    namedWindow("Img");
    namedWindow("Edges");
    //Mat Img=imread("D:\\ImagesForTest\\BookPage.JPG",0);
    Mat Img=imread("test2.jpg",0);
    Mat res;
    Img.convertTo(Img,CV_32FC1,1.0/255.0);
    CalcBlockMeanVariance(Img,res); 
    res=1.0-res;
    res=Img+res;
    imshow("Img",Img);
    cv::threshold(res,res,0.85,1,cv::THRESH_BINARY);
    cv::resize(res,res,cv::Size(res.cols/2,res.rows/2));
    imwrite("result.jpg",res*255);
    imshow("Edges",res);
    waitKey(0);

    return 0;
}

enter image description here

enter image description here

enter image description here

enter image description here