我试图在R中找到一种方法来计算随机森林或条件随机森林的单个树的变量重要性。
一个很好的起点是rpart:::importance
命令,它计算rpart
树的变量重要性度量:
> library(rpart)
> rp <- rpart(Kyphosis ~ Age + Number + Start, data = kyphosis)
> rpart:::importance(rp)
Start Age Number
8.198442 3.101801 1.521863
randomForest::getTree
命令是从randomForest
对象中提取树结构的标准工具,但它返回data.frame
:
library(randomForest)
rf <- randomForest(Kyphosis ~ Age + Number + Start, data = kyphosis)
tree1 <- getTree(rf, k=1, labelVar=TRUE)
str(tree1)
'data.frame': 29 obs. of 6 variables:
$ left daughter : num 2 4 6 8 10 12 0 0 14 16 ...
$ right daughter: num 3 5 7 9 11 13 0 0 15 17 ...
$ split var : Factor w/ 3 levels "Age","Number",..: 2 3 1 2 3 3 NA NA 3 1 ...
$ split point : num 5.5 8.5 78 3.5 14.5 7.5 0 0 3.5 75 ...
$ status : num 1 1 1 1 1 1 -1 -1 1 1 ...
erce$ prediction : chr NA NA NA NA ...
解决方案是使用 as.rpart
命令将tree1
强制转换为rpart
对象。不幸的是,我不知道任何R包中的这个命令。
使用party
包我发现了类似的问题。 varimp
命令适用于cforest
个对象,而不适用于单个树。
library(party)
cf <- cforest(Kyphosis ~ Age + Number + Start, data = kyphosis)
ct <- party:::prettytree(cf@ensemble[[1]], names(cf@data@get("input")))
tree2 <- new("BinaryTree")
tree2@tree <- ct
tree2@data <- cf@data
tree2@responses <- cf@responses
tree2@weights <- cf@initweights
varimp(tree2)
Error in varimp(tree2) :
no slot of name "initweights" for this object of class "BinaryTree"
感谢任何帮助。
答案 0 :(得分:1)
从@Alex的建议开始,我参与了party:::varimp
。此命令计算cforest
的标准(平均降低精度)和条件变量重要性(VI),并且可以轻松修改以计算每个森林树的VI。
set.seed(12345)
y <- cforest(score ~ ., data = readingSkills,
control = cforest_unbiased(mtry = 2, ntree = 10))
varimp_ctrees <- function (object, mincriterion = 0, conditional = FALSE,
threshold = 0.2, nperm = 1, OOB = TRUE, pre1.0_0 = conditional) {
response <- object@responses
if (length(response@variables) == 1 && inherits(response@variables[[1]],
"Surv"))
return(varimpsurv(object, mincriterion, conditional,
threshold, nperm, OOB, pre1.0_0))
input <- object@data@get("input")
xnames <- colnames(input)
inp <- initVariableFrame(input, trafo = NULL)
y <- object@responses@variables[[1]]
if (length(response@variables) != 1)
stop("cannot compute variable importance measure for multivariate response")
if (conditional || pre1.0_0) {
if (!all(complete.cases(inp@variables)))
stop("cannot compute variable importance measure with missing values")
}
CLASS <- all(response@is_nominal)
ORDERED <- all(response@is_ordinal)
if (CLASS) {
error <- function(x, oob) mean((levels(y)[sapply(x, which.max)] !=
y)[oob])
} else {
if (ORDERED) {
error <- function(x, oob) mean((sapply(x, which.max) !=
y)[oob])
} else {
error <- function(x, oob) mean((unlist(x) - y)[oob]^2)
}
}
w <- object@initweights
if (max(abs(w - 1)) > sqrt(.Machine$double.eps))
warning(sQuote("varimp"), " with non-unity weights might give misleading results")
perror <- matrix(0, nrow = nperm * length(object@ensemble),
ncol = length(xnames))
colnames(perror) <- xnames
for (b in 1:length(object@ensemble)) {
tree <- object@ensemble[[b]]
if (OOB) {
oob <- object@weights[[b]] == 0
} else {
oob <- rep(TRUE, length(y))
}
p <- .Call("R_predict", tree, inp, mincriterion, -1L,
PACKAGE = "party")
eoob <- error(p, oob)
for (j in unique(party:::varIDs(tree))) {
for (per in 1:nperm) {
if (conditional || pre1.0_0) {
tmp <- inp
ccl <- create_cond_list(conditional, threshold,
xnames[j], input)
if (is.null(ccl)) {
perm <- sample(which(oob))
} else {
perm <- conditional_perm(ccl, xnames, input,
tree, oob)
}
tmp@variables[[j]][which(oob)] <- tmp@variables[[j]][perm]
p <- .Call("R_predict", tree, tmp, mincriterion,
-1L, PACKAGE = "party")
} else {
p <- .Call("R_predict", tree, inp, mincriterion,
as.integer(j), PACKAGE = "party")
}
perror[(per + (b - 1) * nperm), j] <- (error(p,
oob) - eoob)
}
}
}
perror <- as.data.frame(perror)
return(list(MeanDecreaseAccuracy = colMeans(perror), VIMcTrees=perror))
}
VIMcTrees
是一个矩阵,其行数等于林树的数量,并且每个解释变量都有一列。此矩阵的(i,j)元素是 i -th树中 j -th变量的VI。
varimp_ctrees(y)$VIMcTrees
nativeSpeaker age shoeSize
1 4.853855 30.06969 52.271824
2 15.740311 70.55825 5.409772
3 17.022082 113.86020 0.000000
4 22.003119 19.62134 50.634286
5 6.070659 28.58817 47.049866
6 16.508634 105.50321 2.302387
7 11.487349 31.80002 46.147677
8 19.250631 27.78282 43.589832
9 19.669478 98.73722 0.483079
10 11.748669 85.95768 5.812538