randomForest,randomForestSRC或cforest中单个树的变量重要性?

时间:2015-12-18 00:37:36

标签: r tree random-forest party ensemble-learning

我试图在R中找到一种方法来计算随机森林或条件随机森林的单个树的变量重要性。
一个很好的起点是rpart:::importance命令,它计算rpart树的变量重要性度量:

> library(rpart) 
> rp <- rpart(Kyphosis ~ Age + Number + Start, data = kyphosis)
> rpart:::importance(rp)
   Start      Age   Number 
8.198442 3.101801 1.521863

randomForest::getTree命令是从randomForest对象中提取树结构的标准工具,但它返回data.frame

library(randomForest)
rf <- randomForest(Kyphosis ~ Age + Number + Start, data = kyphosis)
tree1 <- getTree(rf, k=1, labelVar=TRUE)
str(tree1)

'data.frame':   29 obs. of  6 variables:
$ left daughter : num  2 4 6 8 10 12 0 0 14 16 ...
$ right daughter: num  3 5 7 9 11 13 0 0 15 17 ...
$ split var     : Factor w/ 3 levels "Age","Number",..: 2 3 1 2 3 3 NA NA 3 1 ...
$ split point   : num  5.5 8.5 78 3.5 14.5 7.5 0 0 3.5 75 ...
$ status        : num  1 1 1 1 1 1 -1 -1 1 1 ...
erce$ prediction    : chr  NA NA NA NA ...

解决方案是使用 as.rpart 命令将tree1强制转换为rpart对象。不幸的是,我不知道任何R包中的这个命令。

使用party包我发现了类似的问题。 varimp命令适用于cforest个对象,而不适用于单个树。

library(party) 
cf <- cforest(Kyphosis ~ Age + Number + Start, data = kyphosis) 
ct <- party:::prettytree(cf@ensemble[[1]], names(cf@data@get("input"))) 
tree2 <- new("BinaryTree") 
tree2@tree <- ct 
tree2@data <- cf@data 
tree2@responses <- cf@responses 
tree2@weights <- cf@initweights
varimp(tree2)

Error in varimp(tree2) : 
   no slot of name "initweights" for this object of class "BinaryTree"

感谢任何帮助。

1 个答案:

答案 0 :(得分:1)

从@Alex的建议开始,我参与了party:::varimp。此命令计算cforest的标准(平均降低精度)和条件变量重要性(VI),并且可以轻松修改以计算每个森林树的VI。

set.seed(12345)
y <- cforest(score ~ ., data = readingSkills,
       control = cforest_unbiased(mtry = 2, ntree = 10))

varimp_ctrees <- function (object, mincriterion = 0, conditional = FALSE,
threshold = 0.2, nperm = 1, OOB = TRUE, pre1.0_0 = conditional) {
    response <- object@responses
    if (length(response@variables) == 1 && inherits(response@variables[[1]], 
        "Surv")) 
        return(varimpsurv(object, mincriterion, conditional, 
            threshold, nperm, OOB, pre1.0_0))
    input <- object@data@get("input")
    xnames <- colnames(input)
    inp <- initVariableFrame(input, trafo = NULL)
    y <- object@responses@variables[[1]]
    if (length(response@variables) != 1) 
        stop("cannot compute variable importance measure for multivariate response")
    if (conditional || pre1.0_0) {
        if (!all(complete.cases(inp@variables))) 
            stop("cannot compute variable importance measure with missing values")
    }
    CLASS <- all(response@is_nominal)
    ORDERED <- all(response@is_ordinal)
    if (CLASS) {
        error <- function(x, oob) mean((levels(y)[sapply(x, which.max)] != 
            y)[oob])
    } else {
        if (ORDERED) {
            error <- function(x, oob) mean((sapply(x, which.max) != 
                y)[oob])
        } else {
            error <- function(x, oob) mean((unlist(x) - y)[oob]^2)
        }
    }
    w <- object@initweights
    if (max(abs(w - 1)) > sqrt(.Machine$double.eps)) 
        warning(sQuote("varimp"), " with non-unity weights might give misleading results")
    perror <- matrix(0, nrow = nperm * length(object@ensemble), 
        ncol = length(xnames))
    colnames(perror) <- xnames
    for (b in 1:length(object@ensemble)) {
        tree <- object@ensemble[[b]]
        if (OOB) {
            oob <- object@weights[[b]] == 0
        } else {
            oob <- rep(TRUE, length(y))
        }
        p <- .Call("R_predict", tree, inp, mincriterion, -1L, 
            PACKAGE = "party")
        eoob <- error(p, oob)
        for (j in unique(party:::varIDs(tree))) {
            for (per in 1:nperm) {
                if (conditional || pre1.0_0) {
                  tmp <- inp
                  ccl <- create_cond_list(conditional, threshold, 
                    xnames[j], input)
                  if (is.null(ccl)) {
                    perm <- sample(which(oob))
                  }  else {
                    perm <- conditional_perm(ccl, xnames, input, 
                      tree, oob)
                  }
                  tmp@variables[[j]][which(oob)] <- tmp@variables[[j]][perm]
                  p <- .Call("R_predict", tree, tmp, mincriterion, 
                    -1L, PACKAGE = "party")
                } else {
                  p <- .Call("R_predict", tree, inp, mincriterion, 
                    as.integer(j), PACKAGE = "party")
                }
                perror[(per + (b - 1) * nperm), j] <- (error(p, 
                  oob) - eoob)
            }
        }
    }
    perror <- as.data.frame(perror)
    return(list(MeanDecreaseAccuracy = colMeans(perror), VIMcTrees=perror))
}

VIMcTrees是一个矩阵,其行数等于林树的数量,并且每个解释变量都有一列。此矩阵的(i,j)元素是 i -th树中 j -th变量的VI。

varimp_ctrees(y)$VIMcTrees

   nativeSpeaker       age  shoeSize
1       4.853855  30.06969 52.271824
2      15.740311  70.55825  5.409772
3      17.022082 113.86020  0.000000
4      22.003119  19.62134 50.634286
5       6.070659  28.58817 47.049866
6      16.508634 105.50321  2.302387
7      11.487349  31.80002 46.147677
8      19.250631  27.78282 43.589832
9      19.669478  98.73722  0.483079
10     11.748669  85.95768  5.812538