这是我想在R中编写的函数,
i = 1,2,3,....j-1
a,b,c,f,g由nls确定(起始值任意设定为7,30,15,1,2)
S和Y在数据集
中该函数可以用更加计算友好的递归方程表示,
这是我对代码的尝试,但我无法让它收敛,
S=c(235,90,1775,960,965,1110,370,485,667,140,588,10,0,1340,600,0,930,1250,930,120,895,825,0,935,695,270,0,610,0,0,445,0,0,370,470,819,717,0,0,60,0,135,690,0,825,730,1250,370,1010,261,0,865,570,1425,150,1515,1143,0,675,1465,375,0,690,290,0,430,735,510,270,450,1044,0,928,60,95,105,60,950,0,1640,3960,1510,500,1135,0,0,0,181,568,60,1575,247,0,1270,870,290,510,0,540,455,120,580,420,90,525,1116,499,0,60,150,660,1080,1715,90,1090,840,975,280,850,633,30,1530,1765,880,150,225,77,1380,810,835,0,540,1017,1108,0,300,600,90,370,910,0,60,60,0,0,0,0,50,0,735,900)
Y=c(NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,7.7,NA,NA,7.2,NA,NA,NA,NA,NA,NA,7.4,NA,NA,NA,NA,NA,NA,10.7,NA,NA,NA,NA,8.1,8.5,NA,NA,NA,NA,NA,9.9,NA,7.4,NA,NA,NA,9.5,NA,NA,9,NA,NA,NA,8.8,NA,NA,8.5,NA,NA,NA,6.9,NA,NA,7.9,NA,NA,NA,7.3,NA,7.9,8.3,NA,NA,NA,11.5,NA,NA,12.3,NA,NA,NA,6.1,NA,NA,9,NA,NA,NA,10.3,NA,NA,9.7,NA,NA,8.6,NA,9.1,NA,NA,11,NA,NA,12.4,11.1,10.1,NA,NA,NA,NA,11.7,NA,NA,9,NA,NA,NA,10.2,NA,NA,11.2,NA,NA,NA,11.8,NA,9.2,10,9.8,NA,9.5,11.3,10.3,9.5,10.2,10.6,NA,10.8,10.7,11.1,NA,NA,NA,NA,NA,NA,NA,NA,12.6,NA)
mydata = data.frame(Y,S)
f <- function(a,b,f,c,g,m) {
model <- matrix(NA,nrow(m)+1,3)
model[1,1]=0
model[1,2]=0
model[1,3]=a
for (i in 2:nrow(model)){
model[i,1]=exp(-1/c)*model[i-1,1] + m$S[i-1]
model[i,2]=exp(-1/g)*model[i-1,2] + m$S[i-1]
model[i,3]=a+b*model[i,1]-f*model[i,2]
}
model <- as.data.frame(model)
colnames(model) = c('l','m','Y')
model$Y[which(m$Y>0)]
}
Y=mydata$Y
nls(Y ~ f(a,b,f,c,g,mydata), start=list(a=7,b=5.3651,f=5.3656,c=16.50329,g=16.5006),control=list(maxiter=1000,minFactor=1e-12))
我得到的错误取决于起始值是:
nls中的错误(Y~f(a,b,f,c,g,mydata),start = list(a = 7,:
) 迭代次数超过最大值1000nls中的错误(Y~f(a,b,f,c,g,mydata),start = list(a = 7,:
) 奇异梯度
我被困住了,不知道该怎么做,任何帮助都会非常感激。
答案 0 :(得分:1)
试试这个:
ff <- function(a,b,f,c,g) {
Y <- numeric(length(S))
for(i in seq(from=2, to=length(S))) {
j <- seq(length=i-1)
Y[i] <- a + sum((b*exp(-(i-j)/c) - f*exp(-(i-j)/g))*S[j])
}
Y
}
S <- c(235,90,1775,960,965,1110,370,485,667,140,588,10,0,1340,600,0,930,1250,930,120,895,825,0,935,695,270,0,610,0,0,445,0,0,370,470,819,717,0,0,60,0,135,690,0,825,730,1250,370,1010,261,0,865,570,1425,150,1515,1143,0,675,1465,375,0,690,290,0,430,735,510,270,450,1044,0,928,60,95,105,60,950,0,1640,3960,1510,500,1135,0,0,0,181,568,60,1575,247,0,1270,870,290,510,0,540,455,120,580,420,90,525,1116,499,0,60,150,660,1080,1715,90,1090,840,975,280,850,633,30,1530,1765,880,150,225,77,1380,810,835,0,540,1017,1108,0,300,600,90,370,910,0,60,60,0,0,0,0,50,0,735,900)
Y <- c(NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,7.7,NA,NA,7.2,NA,NA,NA,NA,NA,NA,7.4,NA,NA,NA,NA,NA,NA,10.7,NA,NA,NA,NA,8.1,8.5,NA,NA,NA,NA,NA,9.9,NA,7.4,NA,NA,NA,9.5,NA,NA,9,NA,NA,NA,8.8,NA,NA,8.5,NA,NA,NA,6.9,NA,NA,7.9,NA,NA,NA,7.3,NA,7.9,8.3,NA,NA,NA,11.5,NA,NA,12.3,NA,NA,NA,6.1,NA,NA,9,NA,NA,NA,10.3,NA,NA,9.7,NA,NA,8.6,NA,9.1,NA,NA,11,NA,NA,12.4,11.1,10.1,NA,NA,NA,NA,11.7,NA,NA,9,NA,NA,NA,10.2,NA,NA,11.2,NA,NA,NA,11.8,NA,9.2,10,9.8,NA,9.5,11.3,10.3,9.5,10.2,10.6,NA,10.8,10.7,11.1,NA,NA,NA,NA,NA,NA,NA,NA,12.6,NA)
nls(Y ~ f(a,b,f,c,g,mydata), start=list(a=7,b=5.3651,f=5.3656,c=16.50329,g=16.5006))
但是我无法让nls在这里跑。您也可以尝试使用通用优化器。构造平方和函数(-sum of square,因为我们最大化它):
SS <- function(par) {
a <- par[1]
b <- par[2]
f <- par[3]
c <- par[4]
g <- par[5]
-sum((Y - ff(a,b,f,c,g))^2, na.rm=TRUE)
}
并最大化:
library(maxLik)
summary(a <- maxBFGS(SS, start=start))
它有效,但正如你所看到的那样,渐变仍然很大。如果我在BFGS的输出值上重新运行NR优化器,我会得到小的渐变:
summary(b <- maxNR(SS, start=coef(a)))
给出了结果
Newton-Raphson maximisation
Number of iterations: 1
Return code: 2
successive function values within tolerance limit
Function value: -47.36338
Estimates:
estimate gradient
a 10.584488 0.0016371615
b 6.954444 -0.0043306656
f 6.955095 0.0043327901
c 28.622035 -0.0005735572
g 28.619185 0.0003871179
我不知道这是否有意义。 nls和其他优化器的问题暗示你有数值不稳定性,要么与大数值有关,要么与模型公式中的指数差异有关。
检查那里发生了什么: - )