我是这方面的新手,所以我很感激你的帮助。 我正在玩mnist数据集。我从http://g.sweyla.com/blog/2012/mnist-numpy/获取了代码,但更改了#34;图像"为2维,使每个图像成为特征向量。然后我在数据上运行PCA,然后运行SVM并检查分数。一切似乎工作正常,但我得到以下警告,我不知道为什么。
"DataConversionWarning: A column-vector y was passed when a 1d array was expected.\
Please change the shape of y to (n_samples, ), for example using ravel()."
我尝试过几件事,但似乎无法摆脱这种警告。有什么建议?这是完整的代码(忽略缺少的缩进,看起来他们有点混乱在这里复制代码):
import os, struct
from array import array as pyarray
from numpy import append, array, int8, uint8, zeros, arange
from sklearn import svm, decomposition
#from pylab import *
#from matplotlib import pyplot as plt
def load_mnist(dataset="training", digits=arange(10), path="."):
"""
Loads MNIST files into 3D numpy arrays
Adapted from: http://abel.ee.ucla.edu/cvxopt/_downloads/mnist.py
"""
if dataset == "training":
fname_img = os.path.join(path, 'train-images.idx3-ubyte')
fname_lbl = os.path.join(path, 'train-labels.idx1-ubyte')
elif dataset == "testing":
fname_img = os.path.join(path, 't10k-images.idx3-ubyte')
fname_lbl = os.path.join(path, 't10k-labels.idx1-ubyte')
else:
raise ValueError("dataset must be 'testing' or 'training'")
flbl = open(fname_lbl, 'rb')
magic_nr, size = struct.unpack(">II", flbl.read(8))
lbl = pyarray("b", flbl.read())
flbl.close()
fimg = open(fname_img, 'rb')
magic_nr, size, rows, cols = struct.unpack(">IIII", fimg.read(16))
img = pyarray("B", fimg.read())
fimg.close()
ind = [ k for k in range(size) if lbl[k] in digits ]
N = len(ind)
images = zeros((N, rows*cols), dtype=uint8)
labels = zeros((N, 1), dtype=int8)
for i in range(len(ind)):
images[i] = array(img[ ind[i]*rows*cols : (ind[i]+1)*rows*cols ])
labels[i] = lbl[ind[i]]
return images, labels
if __name__ == "__main__":
images, labels = load_mnist('training', arange(10),"path...")
pca = decomposition.PCA()
pca.fit(images)
pca.n_components = 200
images_reduced = pca.fit_transform(images)
lin_classifier = svm.LinearSVC()
lin_classifier.fit(images_reduced, labels)
images2, labels2 = load_mnist('testing', arange(10),"path...")
images2_reduced = pca.transform(images2)
score = lin_classifier.score(images2_reduced,labels2)
print score
感谢您的帮助!
答案 0 :(得分:6)
我认为scikit-learn希望y成为一维阵列。您的labels
变量是2-D - labels.shape
是(N,1)。该警告提示您使用labels.ravel()
,它会将labels
转换为一维数组,形状为(N,)。
重塑也将有效:labels=labels.reshape((N,))
来想一想,所以会调用squeeze:labels=labels.squeeze()
我想这里的 gotcha 就是在numpy中,一维数组不同于二维数组,其中一个维度等于1。