我是hyperopt包的新手。 现在,我想优化我在gensim中实现的LDA模型。优化LDA模型以最大化剪影得分而不是训练数据。
现在,我的问题是"如何将训练数据(numpy.ndarray)传递给从hyperopt调用的目标函数?" 我查看了教程和一些example codes。他们将训练数据设置为全局变量。但在我的情况下,将训练数据设置为全局变量并不困难。
我编写了以下代码来使用hyoeropt优化LDA。我已经将培训数据传递给gensim_objective_function
函数,因为我会将gensim_lda_optimaze
放入调用gensim_lda_optimaze
函数的系统中。
如何实现?
# I want to pass training data to this function!
# gensim_lda_tuning_training_corpus, gensim_lda_tuning_num_topic, gensim_lda_tuning_word2id is what I wanna pass
def gensim_objective_function(arg_dict):
from .gensim_lda import evaluate_clustering
from .gensim_lda import call_lda_single
from .gensim_lda import get_topics_ids
alpha = arg_dict['alpha']
eta = arg_dict['eta']
iteration= arg_dict['iteration']
gamma_threshold= arg_dict['gamma_threshold']
minimum_probability= arg_dict['minimum_probability']
passes= arg_dict['passes']
# train LDA model
lda_model, gensim_corpus = call_lda_single(matrix=gensim_lda_tuning_training_corpus,
num_topics=gensim_lda_tuning_num_topic,
word2id_dict=gensim_lda_tuning_word2id,
alpha=alpha, eta=eta,
iteration=iteration,
gamma_threshold=gamma_threshold,
minimum_probability=minimum_probability,
passes=passes)
topic_ids = get_topics_ids(trained_lda_model=lda_model, gensim_corpus=gensim_corpus)
labels = [t[0] for t in topic_ids]
# get silhouette score with extracted label
evaluation_score = evaluate_clustering(feature_matrix=gensim_lda_tuning_training_corpus, labels=numpy.array(labels))
return -1 * evaluation_score
def gensim_lda_optimaze(feature_matrix, num_topics, word2id_dict):
assert isinstance(feature_matrix, (ndarray, csr_matrix))
assert isinstance(num_topics, int)
assert isinstance(word2id_dict, dict)
parameter_space = {
'alpha': hp.loguniform("alpha", numpy.log(0.1), numpy.log(1)),
'eta': hp.loguniform("eta", numpy.log(0.1), numpy.log(1)),
'iteration': 100,
'gamma_threshold': 0.001,
'minimum_probability': 0.01,
'passes': 10
}
trials = Trials()
best = fmin(
gensim_objective_function,
parameter_space,
algo=tpe.suggest,
max_evals=100,
trials=trials
)
return best
答案 0 :(得分:4)
您始终可以在python中使用partial
。
from functools import partial
def foo(params, data):
return params, data
goo = partial(foo, data=[1,2,3])
print goo('ala')
给出
ala [1, 2, 3]
换句话说,你创建一个代理函数,它将数据作为给定参数加载,并且你要求hyperopt优化这个新函数,并且已经设置了数据。
因此,在您的情况下,您将gensim_objective_function更改为接受所有参数的内容:
def RAW_gensim_objective_function(arg_dict, gensim_lda_tuning_training_corpus,
gensim_lda_tuning_num_topic,
gensim_lda_tuning_word2id):
通过将数据传递到代码的不同部分来创建实际的优化函数
gensim_objective_function = partial(RAW_gensim_objective_function,
gensim_lda_tuning_training_corpus = YOUR_CORPUS,
gensim_lda_tuning_num_topic = YOUR_NUM_TOPICS,
gensim_lda_tuning_word2id = YOUR_IDs)