如何在numpy中为CNN实现反卷积层?

时间:2015-12-13 18:26:34

标签: python numpy machine-learning convolution deconvolution

我尝试为卷积网络实现解卷积层。解卷积的意思是假设我有一个3x227x227输入图像到一个层大小为3x11x11且步幅为4的图层。因此得到的特征图的大小为55x55。我尝试做的是应用反向操作,我将55x55要素图投影到再次3x227x227图像。基本上55x55要素图上的每个值都由3x11x11滤镜加权并投影到图像空间,并且由于步幅而对重叠区域进行平均。

我试图在numpy中实现它而没有任何成功。我找到了一个蛮力嵌套for循环的解决方案,但它很慢。如何有效地实现numpy?欢迎任何帮助。

1 个答案:

答案 0 :(得分:1)

正如this question中所讨论的,反卷积只是一个卷积层,但具有特定的填充,步幅和滤波器大小选择。

例如,如果您当前的图片尺寸为55x55,则可以应用padding=20stride=1filter=[21x21]的卷积来获取75x75图片,然后95x95等等。 (我不是说这个数字的选择给出了输出图像所需的质量,只是尺寸。实际上,我认为从227x22755x55的下采样和然后上采样回到227x227过于激进,但您可以自由尝试任何架构。

这里是任何步幅和填充的正向传递的实现。它确实im2col transformation,但是使用来自numpy的stride_tricks。它不像现代GPU实现那样优化,但肯定比4 inner loops更快:

import numpy as np

def conv_forward(x, w, b, stride, pad):
  N, C, H, W = x.shape
  F, _, HH, WW = w.shape

  # Check dimensions
  assert (W + 2 * pad - WW) % stride == 0, 'width does not work'
  assert (H + 2 * pad - HH) % stride == 0, 'height does not work'

  # Pad the input
  p = pad
  x_padded = np.pad(x, ((0, 0), (0, 0), (p, p), (p, p)), mode='constant')

  # Figure out output dimensions
  H += 2 * pad
  W += 2 * pad
  out_h = (H - HH) / stride + 1
  out_w = (W - WW) / stride + 1

  # Perform an im2col operation by picking clever strides
  shape = (C, HH, WW, N, out_h, out_w)
  strides = (H * W, W, 1, C * H * W, stride * W, stride)
  strides = x.itemsize * np.array(strides)
  x_stride = np.lib.stride_tricks.as_strided(x_padded,
                                             shape=shape, strides=strides)
  x_cols = np.ascontiguousarray(x_stride)
  x_cols.shape = (C * HH * WW, N * out_h * out_w)

  # Now all our convolutions are a big matrix multiply
  res = w.reshape(F, -1).dot(x_cols) + b.reshape(-1, 1)

  # Reshape the output
  res.shape = (F, N, out_h, out_w)
  out = res.transpose(1, 0, 2, 3)
  out = np.ascontiguousarray(out)
  return out