在R中,我可以执行以下操作来比较线性模型中的两个对比:
Starting decorator
Traceback (most recent call last):
File "C:\....\dec_example.py", line 29, in <module>
Foo.bar()
File "C:\....\dec_example.py", line 4, in redefined_method
method(args, **kwargs)
TypeError: 'classmethod' object is not callable
我已经发现如何在Python中完成上述操作:
url <- "https://raw.githubusercontent.com/genomicsclass/dagdata/master/inst/extdata/spider_wolff_gorb_2013.csv"
filename <- "spider_wolff_gorb_2013.csv"
install.packages("downloader", repos="http://cran.us.r-project.org")
library(downloader)
if (!file.exists(filename)) download(url, filename)
spider <- read.csv(filename, skip=1)
head(spider, 5)
# leg type friction
# 1 L1 pull 0.90
# 2 L1 pull 0.91
# 3 L1 pull 0.86
# 4 L1 pull 0.85
# 5 L1 pull 0.80
fit = lm(friction ~ type + leg, data=spider)
fit
# Call:
# lm(formula = friction ~ type + leg, data = spider)
#
# Coefficients:
# (Intercept) typepush legL2 legL3 legL4
# 1.0539 -0.7790 0.1719 0.1605 0.2813
install.packages("contrast", repos="http://cran.us.r-project.org")
library(contrast)
l4vsl2 = contrast(fit, list(leg="L4", type="pull"), list(leg="L2",type="pull"))
l4vsl2
# lm model parameter contrast
#
# Contrast S.E. Lower Upper t df Pr(>|t|)
# 0.1094167 0.04462392 0.02157158 0.1972618 2.45 277 0.0148
现在剩下的就是找到腿对L4与腿对L2的对比度的t统计量。这在Python中是否可行?
答案 0 :(得分:1)
statsmodels仍然缺少一些预定义的对比,但模型结果类的t_test
和wald_test
或f_test
方法可用于测试线性(或仿射)限制。限制由数组或使用参数名称的字符串给出。
有关如何指定对比/限制的详细信息应在文档中
例如
>>> tt = fitted1.t_test("leg[T.L4] - leg[T.L2]")
>>> print(tt.summary())
Test for Constraints
==============================================================================
coef std err t P>|t| [0.025 0.975]
------------------------------------------------------------------------------
c0 0.1094 0.045 2.452 0.015 0.022 0.197
==============================================================================
结果是t_test返回的实例中的属性或方法。例如,conf_int可以通过
获得>>> tt.conf_int()
array([[ 0.02157158, 0.19726175]])
t_test
被矢量化并将每个限制或对比度视为单独的假设。 wald_test
将一系列限制视为联合假设:
>>> tt = fitted1.t_test(["leg[T.L3] - leg[T.L2], leg[T.L4] - leg[T.L2]"])
>>> print(tt.summary())
Test for Constraints
==============================================================================
coef std err t P>|t| [0.025 0.975]
------------------------------------------------------------------------------
c0 -0.0114 0.043 -0.265 0.792 -0.096 0.074
c1 0.1094 0.045 2.452 0.015 0.022 0.197
==============================================================================
>>> tt = fitted1.wald_test(["leg[T.L3] - leg[T.L2], leg[T.L4] - leg[T.L2]"])
>>> print(tt.summary())
<F test: F=array([[ 8.10128575]]), p=0.00038081249480917173, df_denom=277, df_num=2>
除此之外:如果将cov_type
指定为fit
的参数,这也适用于强大的协方差矩阵。