如何在pandas DataFrame中获取包含无效np.datetime64日期的所有行

时间:2015-12-10 16:47:10

标签: python datetime numpy pandas

我有一个pandas DataFrame,它有一个列,“date_col”带有日期字符串。我想过滤所有行的DataFrame,如果由ValueError解析,此列中的日期字符串将抛出numpy.datetime64。我正在寻找以下内容:

bad_rows = df[numpy.datetime64(df["date_col"]) is False]

除了检查False之外,我还想检查ValueError是否被引发。有没有办法在pandas DataFrame中进行这种类型的过滤?

我尝试执行以下操作:

df = pd.DataFrame({"date_col":("2015-04-31", "2015-04-30")})
result = pd.to_datetime(df["date_col"], errors='coerce')

但我明白了:

>>> result
0    2015-04-31
1    2015-04-30

检查每个值的类型表明它们仍然是字符串。

>>> result[0]
'2015-04-31'

>>> df.info()
<class 'pandas.core.frame.DataFrame'>
Int64Index: 2 entries, 0 to 1
Data columns (total 1 columns):
date_col    2 non-null object
dtypes: object(1)

如果我尝试:

>>> result = pd.to_datetime(df["date_col"], errors='coerce' ,format='%Y%m%d')

我明白了:

Traceback (most recent call last):
  File "/Users/lib/python3.4/site-packages/pandas/tseries/tools.py", line 330, in _convert_listlike
    values, tz = tslib.datetime_to_datetime64(arg)
  File "pandas/tslib.pyx", line 1371, in pandas.tslib.datetime_to_datetime64 (pandas/tslib.c:23790)
TypeError: Unrecognized value type: <class 'str'>

During handling of the above exception, another exception occurred:

Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
  File "/Users/lib/python3.4/site-packages/pandas/tseries/tools.py", line 340, in to_datetime
    values = _convert_listlike(arg.values, False, format)
  File "/Users/lib/python3.4/site-packages/pandas/tseries/tools.py", line 333, in _convert_listlike
    raise e
  File "/Users/lib/python3.4/site-packages/pandas/tseries/tools.py", line 307, in _convert_listlike
    arg, format, exact=exact, coerce=coerce
  File "pandas/tslib.pyx", line 2347, in pandas.tslib.array_strptime (pandas/tslib.c:39562)
ValueError: time data '2015-04-31' does not match format '%Y%m%d' (match)

我的熊猫版本是0.16.1,我的numpy版本是1.9.2。

这适用于(对于pandas 0.16.1):

df = pd.DataFrame({"date_col":("2015-04-31", "2015-04-30")})
>>> pd.to_datetime(df['date_col'], coerce=True)
0          NaT
1   2015-04-30
Name: date_col, dtype: datetime64[ns]
>>> pd.to_datetime(df['date_col'], coerce=True).isnull()
0     True
1    False
Name: date_col, dtype: bool

1 个答案:

答案 0 :(得分:1)

只需执行pd.to_datetime(df['date_col'], errors='coerce')这会产生字符串无效的NaT

示例:

In [307]:
df = pd.DataFrame({'date':['2015-02-01', 'sausage', '2011-01-33']})
df

Out[307]:
         date
0  2015-02-01
1     sausage
2  2011-01-33

In [308]:
pd.to_datetime(df['date'], errors='coerce')

Out[308]:
0   2015-02-01
1          NaT
2          NaT
Name: date, dtype: datetime64[ns]

isnull()的后续调用将产生True,其中值无效:

In [309]:
pd.to_datetime(df['date'], errors='coerce').isnull()

Out[309]:
0    False
1     True
2     True
Name: date, dtype: bool

修改

看到你正在使用0.16.1 api有点不同,以下内容应该有效:

result= pd.to_datetime(df['date_col'], coerce=True)