This is the closest to what i'm looking for that I've found
让我们说我的数据框看起来像这样:
d = {'item_number':['K208UL','AKD098008','DF900A','K208UL','AKD098008']
'Comp_ID':['998798098','988797387','12398787','998798098','988797387']
'date':['2016-11-12','2016-11-13','2016-11-17','2016-11-13','2016-11-14']}
df = pd.DataFrame(data=d)
我想计算连续几天观察到相同item_number
和Comp_ID
的次数。
我想这会看起来像是:
g = df.groupby(['Comp_ID','item_number'])
g.apply(lambda x: x.loc[x.iloc[i,'date'].shift(-1) - x.iloc[i,'date'] == 1].count())
但是,在比较之前,我需要从每个日期中抽取一天作为int,我也遇到了麻烦。
for i in df.index:
wbc_seven.iloc[i, 'day_column'] = datetime.datetime.strptime(df.iloc[i,'date'],'%Y-%m-%d').day
显然,基于位置的索引只允许整数?我怎么能解决这个问题?
答案 0 :(得分:0)
一种解决方案是使用数据透视表来计算连续几天观察Comp_ID
和item_number
的次数。
import pandas as pd
d = {'item_number':['K208UL','AKD098008','DF900A','K208UL','AKD098008'],'Comp_ID':['998798098','988797387','12398787','998798098','988797387'],'date':['2016-11-12','2016-11-13','2016-11-17','2016-11-13','2016-11-14']}
df = pd.DataFrame(data=d).sort_values(['item_number','Comp_ID'])
df['date'] = pd.to_datetime(df['date'])
df['delta'] = (df['date'] - df['date'].shift(1))
df = df[(df['delta']=='1 days 00:00:00.000000000') & (df['Comp_ID'] == df['Comp_ID'].shift(1)) &
(df['item_number'] == df['item_number'].shift(1))].pivot_table( index=['item_number','Comp_ID'],
values=['date'],aggfunc='count').reset_index()
df.rename(columns={'date':'consecutive_days'},inplace =True)
结果
item_number Comp_ID consecutive_days
0 AKD098008 988797387 1
1 K208UL 998798098 1
答案 1 :(得分:0)
但是,我需要从每个日期中提取一天作为int 在比较之前,我也遇到了麻烦。
要修复代码,您需要:
void get_name()
{
char first[80];
char second[80];
char fullname[80]; // an array of chars instead of pointers
printf("Please enter first name: ");
scanf("%s", first); // not taking the address of first - is already an address
printf("\nPlease enter last name: ");
scanf("%s", second); // not taking the address of second - is already an address
strcpy(fullname, first); // don't dereference fullname
strcat(fullname, " "); // don't dereference fullname
strcat(fullname, second); // don't dereference fullname
printf("\n\nFull name is : %s ", fullname); // don't dereference fullname
}
请注意以下事项:
consecutive['date'] = pd.to_datetime(consecutive['date'])
g = consecutive.groupby(['Comp_ID','item_number'])
g['date'].apply(lambda x: sum(abs((x.shift(-1) - x)) == pd.to_timedelta(1, unit='D')))
以进行正确比较。提示,为您的作品编写顶级函数,而不是timedelta
,因为它具有更好的可读性,简洁性和美观性:
lambda
这很简单。日期为converted to Timestamp
type,然后减去。差异将导致timedelta
,还需要与def differencer(grp, day_dif):
"""Counts rows in grp separated by day_dif day(s)"""
d = abs(grp.shift(-1) - grp)
return sum(d == pd.to_timedelta(day_dif, unit='D'))
g['date'].apply(differencer, day_dif=1)
对象进行比较,从而将1(或timedelta
)转换为day_dif
。转换的结果将是布尔系列。布尔值由timedelta
表示为0,False
表示1。布尔系列的总和将返回系列中True
值的总数。