在我的数据框中,某些行中有NaN值。我想删除这些行。我用dataframe.dropna(how =' any')解决了这个问题。结果如下:
date time open hign low close volume turnover
2 2015-09-01 931 48.60 48.60 48.00 48.00 449700 21741726
3 2015-09-01 932 47.91 48.33 47.91 48.25 158500 7614508
我想重新索引我的数据帧的行,所以我运行:
length = dataframe.dropna(how='any').shape[0]
dataframe1 = dataframe.index(range(length))
但是dataframe1仍然保留旧的索引值,例如:
date time open hign low close volume turnover
0 NaN NaN NaN NaN NaN NaN NaN NaN
1 NaN NaN NaN NaN NaN NaN NaN NaN
2 2015-09-01 931 48.60 48.60 48.00 48.00 449700 21741726
3 2015-09-01 932 47.91 48.33 47.91 48.25 158500 7614508
如何使数字以0开头并删除前两行?
期望的结果:
date time open hign low close volume turnover
0 2015-09-01 931 48.60 48.60 48.00 48.00 449700 21741726
1 2015-09-01 932 47.91 48.33 47.91 48.25 158500 7614508
答案 0 :(得分:5)
重置索引并指定drop=True
。
df = pd.DataFrame({'close': [nan, nan, 48.0, 48.25],
'date': [nan, nan, '2015-09-01', '2015-09-01'],
'hign': [nan, nan, 48.60, 48.33],
'low': [nan, nan, 48.0, 47.91],
'open': [nan, nan, 48.60, 47.91],
'time': [nan, nan, 931.0, 932.0],
'turnover': [nan, nan, 21741726.0, 7614508.0],
'volume': [nan, nan, 449700.0, 158500.0]})
>>> df
date time open hign low close volume turnover
0 NaN NaN NaN NaN NaN NaN NaN NaN
1 NaN NaN NaN NaN NaN NaN NaN NaN
2 2015-09-01 931 48.60 48.60 48.00 48.00 449700 21741726
3 2015-09-01 932 47.91 48.33 47.91 48.25 158500 7614508
>>> df.dropna(how='any').reset_index(drop=True)
date time open hign low close volume turnover
0 2015-09-01 931 48.60 48.60 48.00 48.00 449700 21741726
1 2015-09-01 932 47.91 48.33 47.91 48.25 158500 7614508
答案 1 :(得分:-1)
您是否尝试过reindex功能?