我使用A-KAZE功能描述符训练了一个BOW码本(词汇表),并尝试使用BFMatcher
和knnMatch
将新提取的功能与码本进行比较。
相反,我收到以下错误,
OpenCV Error: Assertion failed (_queryDescriptors.type() == trainDescType) in knnMatchImpl, file /home/cecilia/opencv-3.0.0/modules/features2d/src/matchers.cpp, line 722 terminate called after throwing an instance of 'cv::Exception' what(): /home/cecilia/opencv-3.0.0/modules/features2d/src/matchers.cpp:722: error: (-215) _queryDescriptors.type() == trainDescType in function knnMatchImpl
我使用以下示例
我的直觉是我将代码簿错误地添加到匹配器中,但我找不到支持其他方法的任何文档或示例。如何在新示例中使用我的代码簿。
/* BOWTest.cpp*/
#include <opencv2/imgcodecs.hpp>
#include <opencv2/videoio.hpp>
#include <opencv2/highgui.hpp>
#include <opencv2/features2d.hpp>
#include <opencv2/opencv.hpp>
#include <iostream>
#include <string>
#include <stdio.h>
#include <dirent.h>
using namespace cv;
using namespace std;
std::string outputFile = "test_codebook.png";
std::string trainingDir = "dataset/";
std::string outputPrefix = "output/res_custom_";
void train(Mat codebook, int codebook_n, Ptr<Feature2D> akaze);
void test(Mat codebook, Ptr<Feature2D> akaze);
int main(int ac, char** av) {
Ptr<Feature2D> feature = AKAZE::create();
Mat codebook;
int codebook_n = 100;
//train(codebook, codebook_n, feature);
test(codebook, feature);
}
//I included the train method to show how the codebook is trained, but it is not actually called in this example
void train(Mat codebook, int codebook_n, Ptr<Feature2D> akaze){
//defining terms for bowkmeans trainer
TermCriteria tc(TermCriteria::MAX_ITER + TermCriteria::EPS, 10, 0.001);
int retries = 1;
int flags = KMEANS_PP_CENTERS;
BOWKMeansTrainer bowTrainer(codebook_n, tc, retries, flags);
int i = 0;
unsigned long numPoints = 0;
DIR *d;
struct dirent *dir;
d = opendir(trainingDir.c_str());
if (d) {
while ((dir = readdir(d)) != NULL){
try {
Mat img;
std::string imgName = trainingDir + dir->d_name;
i = i + 1;
printf("%d, %lu: %s ...", i,numPoints, imgName.c_str());
img = imread(imgName, CV_LOAD_IMAGE_COLOR);
if(img.empty()){ //not image
printf("bad.\n");
continue;
}
printf("loaded.\n");
resize(img, img, Size(200, 200));
Mat features;
vector<KeyPoint> keypoints;
akaze->detectAndCompute(img, Mat(), keypoints, features);
features.convertTo(features, CV_32F);
bowTrainer.add(features);
Mat res;
drawKeypoints(img, keypoints, res);
std::string output_img = outputPrefix + dir->d_name;
imwrite(output_img, res);
numPoints += features.rows;
}catch(int e){
cout << "An exception occurred. Nr. " << e << '\n';
}
}
printf("Read images!");
closedir(d);
codebook = bowTrainer.cluster();
imwrite(outputFile, codebook);
}
}
void test(Mat codebook, Ptr<Feature2D> akaze){
codebook = imread(outputFile);
int codebook_n = codebook.rows;
BFMatcher matcher(NORM_L2);
matcher.add(std::vector<cv::Mat>(1, codebook));
Mat res(Size(codebook_n * 10, 3*10), CV_8UC3, Scalar(0));
vector<int> res_idx(codebook_n, 0);
try {
Mat img;
String imgName = trainingDir + "dog1.jpeg";
img = imread(imgName, CV_LOAD_IMAGE_COLOR);
if(img.empty()){ //not image
printf("bad.\n");
}else{
printf("loaded.\n");
resize(img, img, Size(200, 200));
Mat features;
vector<KeyPoint> keypoints;
akaze->detectAndCompute(img, noArray(), keypoints, features);
features.convertTo(features, CV_32F);
vector< vector< DMatch > > nn_matches;
matcher.knnMatch(features, nn_matches, 1);
printf("%d matched keypoints", nn_matches.size());
}
}catch(int e){
cout << "An exception occurred. Nr. " << e << '\n';
}
}
loaded.
OpenCV Error: Assertion failed (_queryDescriptors.type() == trainDescType) in knnMatchImpl, file /home/cecilia/opencv-3.0.0/modules/features2d/src/matchers.cpp, line 722
terminate called after throwing an instance of 'cv::Exception'
what(): /home/cecilia/opencv-3.0.0/modules/features2d/src/matchers.cpp:722: error: (-215) _queryDescriptors.type() == trainDescType in function knnMatchImpl
答案 0 :(得分:3)
您不应将codebook
保存为图像。 imwrite
最终会扩展并转换代码簿的值。 imread
使用默认参数将其加载为3通道图像CV_8UC3。要存储不是严格图像的矩阵,您应该使用FileStorage
。
保存强>
FileStorage fs(outputFile, FileStorage::WRITE);
// Store codebook
fs << "codebook" << codebook;
<强>负载:强>
FileStorage fs(outputFile, FileStorage::READ);
fs["codebook"] >> codebook;
您应该使用BOWImgDescriptorExtractor从您的功能开始计算BoW图像描述符,在这种情况下为AKAZE:
Ptr<DescriptorMatcher> matcher = BFMatcher::create("BruteForce");
BOWImgDescriptorExtractor bow(akaze, matcher);
bow.setVocabulary(codebook);
// Mat img = ...
// AKAZE features
Mat features;
vector<KeyPoint> keypoints;
akaze->detectAndCompute(img, noArray(), keypoints, features);
features.convertTo(features, CV_32F);
// BoW descriptor
Mat bowFeatures;
vector<vector<int>> pointsIdxsOfCluster;
bow.compute(features, bowFeatures, &pointsIdxsOfCluster);
您可以使用内置glob从文件夹中读取图片,避免使用dirent
。
vector<String> fileNames;
glob(trainingDir, fileNames);
for (int i=0; i<fileNames.size(); ++i)
{
Mat img = imread(fileNames[i]);
...
您可以将iostream
与cout
一起使用,而不是printf
。
这就是代码的样子:
#include <opencv2/opencv.hpp>
#include <iostream>
using namespace cv;
using namespace std;
std::string outputFile = "test_codebook.yml";
std::string trainingDir = "path_to_train_folder/";
std::string outputPrefix = "path_to_output_folder/";
void train(Mat codebook, int codebook_n, Ptr<Feature2D> akaze);
void test(Mat codebook, Ptr<Feature2D> akaze);
int main(int ac, char** av) {
Ptr<Feature2D> feature = AKAZE::create();
Mat codebook;
int codebook_n = 100;
train(codebook, codebook_n, feature);
test(codebook, feature);
}
//I included the train method to show how the codebook is trained, but it is not actually called in this example
void train(Mat codebook, int codebook_n, Ptr<Feature2D> akaze){
//defining terms for bowkmeans trainer
TermCriteria tc(TermCriteria::MAX_ITER + TermCriteria::EPS, 10, 0.001);
int retries = 1;
int flags = KMEANS_PP_CENTERS;
BOWKMeansTrainer bowTrainer(codebook_n, tc, retries, flags);
int i = 0;
unsigned long numPoints = 0;
vector<String> fileNames;
glob(trainingDir, fileNames);
for (int i=0; i<fileNames.size(); ++i)
{
try {
Mat img;
std::string imgName = fileNames[i];
std::string filename = imgName.substr(trainingDir.length());
cout << i << ", " << numPoints << " : " << imgName;
img = imread(imgName, CV_LOAD_IMAGE_COLOR);
if (img.empty()){ //not image
cout << " bad" << endl;
continue;
}
cout << " loaded" << endl;
resize(img, img, Size(200, 200));
Mat features;
vector<KeyPoint> keypoints;
akaze->detectAndCompute(img, Mat(), keypoints, features);
features.convertTo(features, CV_32F);
bowTrainer.add(features);
Mat res;
drawKeypoints(img, keypoints, res);
std::string output_img = outputPrefix + filename;
imwrite(output_img, res);
numPoints += features.rows;
}
catch (int e){
cout << "An exception occurred. Nr. " << e << '\n';
}
}
cout << "Read images!" << endl;
codebook = bowTrainer.cluster();
{
FileStorage fs(outputFile, FileStorage::WRITE);
// Store codebook
fs << "codebook" << codebook;
// You can also store additional info, like the list of images
//// Store train images filenames
//fs << "train" << "[";
//for (int i = 0; i < fileNames.size(); ++i)
//{
// fs << fileNames[i];
//}
//fs << "]";
}
}
void test(Mat codebook, Ptr<Feature2D> akaze)
{
vector<String> trainFileNames;
{
FileStorage fs(outputFile, FileStorage::READ);
fs["codebook"] >> codebook;
/*FileNode trainingImages = fs["train"];
FileNodeIterator it = trainingImages.begin(), it_end = trainingImages.end();
int idx = 0;
for (; it != it_end; ++it, idx++)
{
trainFileNames.push_back(*it);
}*/
}
int codebook_n = codebook.rows;
Ptr<DescriptorMatcher> matcher = BFMatcher::create("BruteForce");
BOWImgDescriptorExtractor bow(akaze, matcher);
bow.setVocabulary(codebook);
try {
Mat img;
String imgName = "path_to_test_image";
img = imread(imgName, CV_LOAD_IMAGE_COLOR);
if (img.empty()){ //not image
cout << "bad" << endl;
}
else{
cout << "loaded" << endl;
resize(img, img, Size(200, 200));
Mat features;
vector<KeyPoint> keypoints;
akaze->detectAndCompute(img, noArray(), keypoints, features);
features.convertTo(features, CV_32F);
Mat bowFeatures;
vector<vector<int>> pointsIdxsOfCluster;
bow.compute(features, bowFeatures, &pointsIdxsOfCluster);
// bowFeatures is the descriptor you're looking for
// pointsIdxsOfCluster contains the indices of keypoints that belong to the cluster.
}
}
catch (int e){
cout << "An exception occurred. Nr. " << e << endl;
}
}