我有以下DataFrame:
|-----id-------|----value------|-----desc------|
| 1 | v1 | d1 |
| 1 | v2 | d2 |
| 2 | v21 | d21 |
| 2 | v22 | d22 |
|--------------|---------------|---------------|
我想将其转换为:
|-----id-------|----value------|-----desc------|
| 1 | v1;v2 | d1;d2 |
| 2 | v21;v22 | d21;d22 |
|--------------|---------------|---------------|
我认为rdd.reduce是关键,但我不知道如何使其适应这种情况。
答案 0 :(得分:8)
您可以使用spark sql转换数据
realm.write {
let storageArea = …
let sortedProducts = Array(storageArea.products.sorted("name"))
storageArea.products.removeAll()
storageArea.products.appendContentsOf(sortedProducts)
}
答案 1 :(得分:1)
假设您有类似
的内容import scala.util.Random
val sqlc: SQLContext = ???
case class Record(id: Long, value: String, desc: String)
val testData = for {
(i, j) <- List.fill(30)(Random.nextInt(5), Random.nextInt(5))
} yield Record(i, s"v$i$j", s"d$i$j")
val df = sqlc.createDataFrame(testData)
您可以轻松地将数据加入:
import sqlc.implicits._
def aggConcat(col: String) = df
.map(row => (row.getAs[Long]("id"), row.getAs[String](col)))
.aggregateByKey(Vector[String]())(_ :+ _, _ ++ _)
val result = aggConcat("value").zip(aggConcat("desc")).map{
case ((id, value), (_, desc)) => (id, value, desc)
}.toDF("id", "values", "descs")
如果您想要连接字符串而不是数组,可以稍后运行
import org.apache.spark.sql.functions._
val resultConcat = result
.withColumn("values", concat_ws(";", $"values"))
.withColumn("descs" , concat_ws(";", $"descs" ))
答案 2 :(得分:1)
如果使用DataFrames,请使用UDAF
import org.apache.spark.sql.Row
import org.apache.spark.sql.expressions.{MutableAggregationBuffer, UserDefinedAggregateFunction}
import org.apache.spark.sql.types.{DataType, StringType, StructField, StructType}
class ConcatStringsUDAF(InputColumnName: String, sep:String = ",") extends UserDefinedAggregateFunction {
def inputSchema: StructType = StructType(StructField(InputColumnName, StringType) :: Nil)
def bufferSchema: StructType = StructType(StructField("concatString", StringType) :: Nil)
def dataType: DataType = StringType
def deterministic: Boolean = true
def initialize(buffer: MutableAggregationBuffer): Unit = buffer(0) = ""
private def concatStrings(str1: String, str2: String): String = {
(str1, str2) match {
case (s1: String, s2: String) => Seq(s1, s2).filter(_ != "").mkString(sep)
case (null, s: String) => s
case (s: String, null) => s
case _ => ""
}
}
def update(buffer: MutableAggregationBuffer, input: Row): Unit = {
val acc1 = buffer.getAs[String](0)
val acc2 = input.getAs[String](0)
buffer(0) = concatStrings(acc1, acc2)
}
def merge(buffer1: MutableAggregationBuffer, buffer2: Row): Unit = {
val acc1 = buffer1.getAs[String](0)
val acc2 = buffer2.getAs[String](0)
buffer1(0) = concatStrings(acc1, acc2)
}
def evaluate(buffer: Row): Any = buffer.getAs[String](0)
}
然后用这种方式
val stringConcatener = new ConcatStringsUDAF("Category_ID", ",")
data.groupBy("aaid", "os_country").agg(stringConcatener(data("X")).as("Xs"))
从Spark 1.6开始,看一下Datasets和Aggregator。
答案 3 :(得分:0)
经过一些研究后,我想出了这样的事情:
val data = sc.parallelize(
List(
("1", "v1", "d1"),
("1", "v2", "d2"),
("2", "v21", "d21"),
("2", "v22", "d22")))
.map{ case(id, value, desc)=>((id), (value, desc))}
.reduceByKey((x,y)=>(x._1+";"+y._1, x._2+";"+x._2))
.map{ case(id,(value, desc))=>(id, value, desc)}.toDF("id", "value","desc")
.show()
让我:
+---+-------+-------+
| id| value| desc|
+---+-------+-------+
| 1| v1;v2| d1;d1|
| 2|v21;v22|d21;d21|
+---+-------+-------+