MCMC贝叶斯推理的JAGS错误

时间:2015-12-06 03:25:53

标签: r mcmc jags

在R中,我正在运行MCMC贝叶斯推理,用于混合Gamma分布的数据。 JAGS在这里使用。模型文件gmd.bug如下

model {
for (i in 1:N) {
y[i] ~ dsum(p*one, (1-p)*two)
}
one ~ dgamma(alpha1, beta1)
two ~ dgamma(alpha2, beta2)    alpha1 ~ dunif(0, 10)
beta1 ~ dunif(0, 10)
alpha2 ~ dunif(0, 10)
beta2 ~ dunif(0, 10)
p ~ dunif(0, 1)
}

然后,这是推理阶段

gmd.jags = jags.model("gmd.bug",
data = list(N = NROW(a), y=unlist(a)),
inits = inits, n.chains = 3, n.adapt = 1000)

这是困扰我的错误

Error in jags.model("gmd.bug", data = list(N = NROW(a), y = unlist(a)),  : 
Error in node y[1]
Node inconsistent with parents

任何人都知道需要修复的内容吗?

1 个答案:

答案 0 :(得分:1)

回答OP的原始问题 当您撰写y[i] ~ dsum(p*dgamma(alpha1, beta1), (1-p)*dgamma(alpha2, beta2))时,dgamma(alpha1, beta1)需要由[i]编入索引,如

gamma1[i] ~ dgamma(alpha1, beta1)
gamma2[i] ~ dgamma(alpha2, beta2)

回答OP的第二个问题(编辑后)

这是你问题的症结所在。但修复它会带来额外的困难,因为为了确保y [i]在初始化时与其父项一致,您需要确保在初始化时y[i] == p*gamma1[i]+(1-p)*gamma2[i]完全正确。如果让JAGS自动处理初始化,它将从先验中初始化,而不理解dsum对初始值的约束,并且您将收到错误。一种策略是在gamma1初始化gamma2y

以下代码适用于我(但您当然希望运行更多迭代):

# Data simulation:
library(rjags)
N=200
alpha1 <- 3
beta1 <- 3
alpha2 <- 5
beta2 <- 1
p <- .7

y <- vector(mode="numeric", length=N)
for(i in 1:N){
  y[i] <- p*rgamma(1,alpha1,beta1) + (1-p)*rgamma(1,alpha1,beta1)
}

# JAGS model
sink("mymodel.txt")
cat("model{
    for (i in 1:N) {
      gamma1[i] ~ dgamma(alpha1, beta1)
      gamma2[i] ~ dgamma(alpha2, beta2)
      pg1[i] <- p*gamma1[i]
      pg2[i] <- (1-p)*gamma2[i]
      y[i] ~ dsum(pg1[i], pg2[i])
    }
    alpha1 ~ dunif(0, 10)
    beta1 ~ dunif(0, 10)
    alpha2 ~ dunif(0, 10)
    beta2 ~ dunif(0, 10)
    p ~ dunif(0, 1)
    }", fill=TRUE)
sink()
jags.data <- list(N=N, y=y)

inits <- function(){list(gamma1=y, gamma2=y)}

params <- c("alpha1", "beta1", "alpha2", "beta2", "p")

nc <- 5
n.adapt <-200
n.burn <- 200
n.iter <- 1000
thin <- 10
mymodel <- jags.model('mymodel.txt', data = jags.data, inits=inits, n.chains=nc, n.adapt=n.adapt)
update(mymodel, n.burn)
mymodel_samples <- coda.samples(mymodel,params,n.iter=n.iter, thin=thin)