我有一个CSV,其中一个字段是嵌套的JSON对象,存储为字符串。我想将CSV加载到数据帧中,并将JSON解析为附加到原始数据帧的一组字段;换句话说,提取JSON的内容并使它们成为数据帧的一部分。
我的CSV:
id|dist|json_request
1|67|{"loc":{"lat":45.7, "lon":38.9},"arrival": "Monday", "characteristics":{"body":{"color":"red", "make":"sedan"}, "manuf_year":2014}}
2|34|{"loc":{"lat":46.89, "lon":36.7},"arrival": "Tuesday", "characteristics":{"body":{"color":"blue", "make":"sedan"}, "manuf_year":2014}}
3|98|{"loc":{"lat":45.70, "lon":31.0}, "characteristics":{"body":{"color":"yellow"}, "manuf_year":2010}}
请注意,并非所有行的所有键都相同。 我希望它能产生一个与此相当的数据框:
data = {'id' : [1, 2, 3],
'dist' : [67, 34, 98],
'loc_lat': [45.7, 46.89, 45.70],
'loc_lon': [38.9, 36.7, 31.0],
'arrival': ["Monday", "Tuesday", "NA"],
'characteristics_body_color':["red", "blue", "yellow"],
'characteristics_body_make':["sedan", "sedan", "NA"],
'characteristics_manuf_year':[2014, 2014, 2010]}
df = pd.DataFrame(data)
(我真的很抱歉,我不能让桌子本身看起来很明智!请不要生我的气,我是菜鸟:()
经过大量的讨论,我想出了以下解决方案:
#Import data
df_raw = pd.read_csv("sample.csv", delimiter="|")
#Parsing function
def parse_request(s):
sj = json.loads(s)
norm = json_normalize(sj)
return norm
#Create an empty dataframe to store results
parsed = pd.DataFrame(columns=['id'])
#Loop through and parse JSON in each row
for i in df_raw.json_request:
parsed = parsed.append(parse_request(i))
#Merge results back onto original dataframe
df_parsed = df_raw.join(parsed)
这显然是不优雅的,效率非常低(在我需要解析的300K行上花费多个小时)。还有更好的方法吗?
我已经完成了以下相关问题: Reading a CSV into pandas where one column is a json string (这似乎只适用于简单的,非嵌套的JSON)
JSON to pandas DataFrame (我从中借用了部分解决方案,但我无法弄清楚如何在数据帧中应用此解决方案而不循环遍历行)
我正在使用Python 3.3和Pandas 0.17。
答案 0 :(得分:10)
这种方法可以将速度提高10到100倍,并且应该允许您在一分钟内读取大文件,而不是一个多小时。想法是只在读取所有数据后才构造数据帧,从而减少需要分配内存的次数,并且只对整个数据块调用json_normalize
一次,而不是每次行:
import csv
import json
import pandas as pd
from pandas.io.json import json_normalize
with open('sample.csv') as fh:
rows = csv.reader(fh, delimiter='|')
header = next(rows)
# "transpose" the data. `data` is now a tuple of strings
# containing JSON, one for each row
idents, dists, data = zip(*rows)
data = [json.loads(row) for row in data]
df = json_normalize(data)
df['ids'] = idents
df['dists'] = dists
那样:
>>> print(df)
arrival characteristics.body.color characteristics.body.make \
0 Monday red sedan
1 Tuesday blue sedan
2 NaN yellow NaN
characteristics.manuf_year loc.lat loc.lon ids
0 2014 45.70 38.9 1
1 2014 46.89 36.7 2
2 2010 45.70 31.0 3
此外,我查看了pandas
json_normalize
正在做什么,并且它正在执行一些深层副本,如果您只是从CSV创建数据帧,则不需要这些副本。我们可以实现我们自己的flatten
函数,该函数使用字典并“平展”键,类似于json_normalize
。然后我们可以创建一个生成器,它一次吐出一行数据帧作为记录。这种方法更快:
def flatten(dct, separator='_'):
"""A fast way to flatten a dictionary,"""
res = {}
queue = [('', dct)]
while queue:
prefix, d = queue.pop()
for k, v in d.items():
key = prefix + k
if not isinstance(v, dict):
res[key] = v
else:
queue.append((key + separator, v))
return res
def records_from_json(fh):
"""Yields the records from a file object."""
rows = csv.reader(fh, delimiter='|')
header = next(rows)
for ident, dist, data in rows:
rec = flatten(json.loads(data))
rec['id'] = ident
rec['dist'] = dist
yield rec
def from_records(path):
with open(path) as fh:
return pd.DataFrame.from_records(records_from_json(fh))
以下是计时实验的结果,我通过重复行人为地增加了样本数据的大小。行数由n_rows
表示:
method 1 (s) method 2 (s) original time (s)
n_rows
96 0.008217 0.002971 0.362257
192 0.014484 0.004720 0.678590
384 0.027308 0.008720 1.373918
768 0.055644 0.016175 2.791400
1536 0.105730 0.030914 5.727828
3072 0.209049 0.060105 11.877403
线性推断,第一种方法应该在大约20秒内读取300k行,而第二种方法应该花费大约6秒。