我有一个大的JSON文件(400k行)。我正在尝试隔离以下内容:
政策-“说明”
策略项-“用户”和“数据库值”
JSON文件-https://pastebin.com/hv8mLfgx
熊猫的预期产量:https://imgur.com/a/FVcNGsZ
“策略项”之后的所有内容都重复了整个文件中完全相同的内容。我已经尝试了下面的代码来隔离“用户”。似乎不起作用,我正在尝试将所有这些都转储为CSV。
编辑*这是我尝试尝试的解决方案,但无法使其正常工作-Deeply nested JSON response to pandas dataframe
from pandas.io.json import json_normalize as Jnormal
import json
import pprint, csv
import re
with open("Ranger_Policies_20190204_195010.json") as file:
jsonDF = json.load(file)
for item in jsonDF['policies'][0]['policyItems'][0]:
print ('{} - {} - {}'.format(jsonDF['users']))
编辑2:我有一些可以捕获一些USERS的工作代码,但不能捕获所有USERS。 25中只有11。
from pandas.io.json import json_normalize as Jnormal
import json
import pprint, csv
import re
with open("Ranger_Policies_20190204_195010.json") as file:
jsonDF = json.load(file)
pNode = Jnormal(jsonDF['policies'][0]['policyItems'], record_path='users')
print(pNode.head(500))
编辑3:,这是最终的工作副本,但是我仍然没有复制所有的TABLE数据。我设置了一个循环以简单地忽略一切。捕获所有内容,然后在Excel中对其进行排序,是否有人对我无法捕获所有TABLE值有任何想法?
json_data = json.load(file)
with open("test.csv", 'w', newline='') as fd:
wr = csv.writer(fd)
wr.writerow(('Database name', 'Users', 'Description', 'Table'))
for policy in json_data['policies']:
desc = policy['description']
db_values = policy['resources']['database']['values']
db_tables = policy['resources']['table']['values']
for item in policy['policyItems']:
users = item['users']
for dbT in db_tables:
for user in users:
for db in db_values:
_ = wr.writerow((db, user, desc, dbT))```
答案 0 :(得分:2)
熊猫在这里是过大的:csv标准模块就足够了。您只需迭代策略以提取描述和数据库值,接下来访问policyItems以提取用户:
with open("Ranger_Policies_20190204_195010.json") as file:
jsonDF = json.load(file)
with open("outputfile.csv", newline='') as fd:
wr = csv.writer(fd)
_ = wr.writerow(('Database name', 'Users', 'Description'))
for policy in js['policies']:
desc = policy['description']
db_values = policy['resources']['database']['values']
for item in policy['policyItems']:
users = item['users']
for user in users:
for db in db_values:
if db != '*':
_ = wr.writerow((db, user, desc))
答案 1 :(得分:1)
这是一种实现方式,假设您的json
数据位于名为json_data
的变量中
from itertools import product
def make_dfs(data):
cols = ['db_name', 'user', 'description']
for item in data.get('policies'):
description = item.get('description')
users = item.get('policyItems', [{}])[0].get('users', [None])
db_name = item.get('resources', {}).get('database', {}).get('values', [None])
db_name = [name for name in db_name if name != '*']
prods = product(db_name, users, [description])
yield pd.DataFrame.from_records(prods, columns=cols)
df = pd.concat(make_dfs(json_data), ignore_index=True)
print(df)
db_name user description
0 m2_db hive Policy for all - database, table, column
1 m2_db rangerlookup Policy for all - database, table, column
2 m2_db ambari-qa Policy for all - database, table, column
3 m2_db af34 Policy for all - database, table, column
4 m2_db g748 Policy for all - database, table, column
5 m2_db hdfs Policy for all - database, table, column
6 m2_db dh10 Policy for all - database, table, column
7 m2_db gs22 Policy for all - database, table, column
8 m2_db dh27 Policy for all - database, table, column
9 m2_db ct52 Policy for all - database, table, column
10 m2_db livy_pyspark Policy for all - database, table, column
在Python 3.5.1
和pandas==0.23.4
上进行了测试