在Python中联系跟踪 - 使用时间序列

时间:2015-11-30 19:21:03

标签: python python-2.7 pandas time-series

假设我有时间序列数据(x轴上的时间,y-z平面上的坐标。

鉴于受感染用户的种子集,我想在d时间内从种子集中的点获取距离t内的所有用户。这基本上只是联系人追踪。

实现这一目标的智能方法是什么?

天真的方法是这样的:

points_at_end_of_iteration = []
for p in seed_set:
    other_ps = find_points_t_time_away(t)
    points_at_end_of_iteration += find_points_d_distance_away_from_set(other_ps)

更聪明的方法是什么 - 最好将所有数据保存在RAM中(尽管我不确定这是否可行)。熊猫是个不错的选择吗?我一直在考虑Bandicoot,但它似乎无法为我做到这一点。

如果我能改进这个问题,请告诉我 - 也许它太宽泛了。

修改

我认为上面提到的算法存在缺陷。

这样做会更好:

for user,time,pos in infected_set:
    info = get_next_info(user, time) # info will be a tuple: (t, pos)
    intersecting_users = find_intersecting_users(user, time, delta_t, pos, delta_pos) # intersect if close enough to the user's pos/time
    infected_set.add(intersecting_users)
    update_infected_set(user, info) # change last_time and last_pos (described below)

infected_set我认为实际上应该是一个哈希地图{user_id: {last_time: ..., last_pos: ...}, user_id2: ...}

一个潜在的问题是用户是独立处理的,因此user2的下一个时间戳可能是user1之后的几小时或几天。

如果我进行插值,以便每个用户都有每个时间点(比如一个小时)的信息,那么联系人跟踪可能会更容易,但这会大量增加数据量。

数据格式/示例

user_id = 123
timestamp = 2015-05-01 05:22:25
position = 12.111,-12.111 # lat,long

有一个包含所有记录的csv文件:

uid1,timestamp1,position1
uid1,timestamp2,position2
uid2,timestamp3,position3

还有一个文件目录(格式相同),其中每个文件对应一个用户。

记录/ uid1.csv
记录/ uid2.csv

1 个答案:

答案 0 :(得分:2)

第一个使用插值的解决方案:

.o

没有插值的第二种解决方案:

# i would use a shelf (a persistent, dictionary-like object,
# included with python).
import shelve

# hashmap of clean users indexed by timestamp)
# { timestamp1: {uid1: (lat11, long11), uid12: (lat12, long12), ...},
#   timestamp2: {uid1: (lat21, long21), uid2: (lat22, long22), ...},
#   ...
# }
#
clean_users = shelve.open("clean_users.dat")

# load data in clean_users from csv (shelve use same syntax than
# hashmap). You will interpolate data (only data at a given timestamp
# will be in memory at the same time). Note: the timestamp must be a string

# hashmap of infected users indexed by timestamp (same format than clean_users)
infected_users = shelve.open("infected_users.dat")

# for each iteration
for iteration in range(1, N):

    # compute current timestamp because we interpolate each user has a location
    current_timestamp = timestamp_from_iteration(iteration)

    # get clean users for this iteration (in memory)
    current_clean_users = clean_user[current_timestamp]

    # get infected users for this iteration (in memory)
    current_infected_users = infected_user[current_timestamp]

    # new infected user for this iteration
    new_infected_users = dict()

    # compute new infected_users for this iteration from current_clean_users and
    # current_infected_users then store the result in new_infected_users

    # remove user in new_infected_users from clean_users

    # add user in new_infected_users to infected_users

# close the shelves
infected_users.close()
clean_users.close()