有没有办法为numpy.gradient指定dtype?
我正在使用一组子数组,它会抛出以下错误:
ValueError: setting an array element with a sequence.
以下是一个例子:
import numpy as np
a = np.empty([3, 3], dtype=object)
it = np.nditer(a, flags=['multi_index', 'refs_ok'])
while not it.finished:
i = it.multi_index[0]
j = it.multi_index[1]
a[it.multi_index] = np.array([i, j])
it.iternext()
print(a)
输出
[[array([0, 0]) array([0, 1]) array([0, 2])]
[array([1, 0]) array([1, 1]) array([1, 2])]
[array([2, 0]) array([2, 1]) array([2, 2])]]
我希望print(np.gradient(a))
返回
array(
[[array([[1, 0],[0, 1]]), array([[1, 0], [0, 1]]), array([[1, 0], [0, 1]])],
[array([[1, 0], [0, 1]]), array([[1, 0], [0, 1]]), array([[1, 0],[0, 1]])],
[array([[1, 0], [0, 1]]), array([[1, 0], [0, 1]]), array([[1, 0],[0, 1]])]],
dtype=object)
请注意,在这种情况下,向量字段的渐变是一个标识张量字段。
答案 0 :(得分:1)
为什么要使用dtype
对象的数组?这比使用2d阵列还要多。
e.g。
In [53]: a1=np.array([[1,2],[3,4],[5,6]])
In [54]: a1
Out[54]:
array([[1, 2],
[3, 4],
[5, 6]])
In [55]: np.gradient(a1)
Out[55]:
[array([[ 2., 2.],
[ 2., 2.],
[ 2., 2.]]),
array([[ 1., 1.],
[ 1., 1.],
[ 1., 1.]])]
或逐列工作或逐行工作
In [61]: [np.gradient(i) for i in a1.T]
Out[61]: [array([ 2., 2., 2.]), array([ 2., 2., 2.])]
In [62]: [np.gradient(i) for i in a1]
Out[62]: [array([ 1., 1.]), array([ 1., 1.]), array([ 1., 1.])]
dtype=object
只有在子阵列/列表的类型和/或形状不同时才有意义。即使这样,它也不会给常规的Python列表增加太多。
==============================
我可以使用你的2d a
,并使用:
In [126]: a1=np.zeros((3,3,2),int)
In [127]: a1.flat[:]=[i for i in a.flatten()]
In [128]: a1
Out[128]:
array([[[0, 0],
[0, 1],
[0, 2]],
[[1, 0],
[1, 1],
[1, 2]],
[[2, 0],
[2, 1],
[2, 2]]])
或者我可以使用meshgrid
生成相同的内容:
In [129]: X,Y=np.meshgrid(np.arange(3),np.arange(3),indexing='ij')
In [130]: a2=np.array([Y,X]).T
当我应用np.gradient
时,我得到3个数组,每个(3,3,2)形状。
In [136]: ga1=np.gradient(a1)
In [137]: len(ga1)
Out[137]: 3
In [138]: ga1[0].shape
Out[138]: (3, 3, 2)
看起来前两个阵列具有您想要的值,因此只需重新排列它们。
In [141]: np.array(ga1[:2]).shape
Out[141]: (2, 3, 3, 2)
In [143]: gga1=np.array(ga1[:2]).transpose([1,2,0,3])
In [144]: gga1.shape
Out[144]: (3, 3, 2, 2)
In [145]: gga1[0,0]
Out[145]:
array([[ 1., -0.],
[-0., 1.]])
如果他们必须回到(3,3)对象数组,我可以这样做:
In [146]: goa1=np.empty([3,3],dtype=object)
In [147]: for i in range(3):
for j in range(3):
goa1[i,j]=gga1[i,j]
.....:
In [148]: goa1
Out[148]:
array([[array([[ 1., -0.],
[-0., 1.]]),
array([[ 1., -0.],
[ 0., 1.]]),
array([[ 1., -0.],
...
[ 0., 1.]]),
array([[ 1., 0.],
[ 0., 1.]])]], dtype=object)
我仍然想知道使用对象数组是什么意思。