在Linux 2.6.11.12中,在shedule()
函数选择要运行的“下一个”任务之前,它将锁定runqueue
spin_lock_irq(&rq->lock);
并且,在调用context_switch()
执行上下文切换之前,它将调用prepare_arch_switch()
,默认情况下为no-op:
/*
* Default context-switch locking:
*/
#ifndef prepare_arch_switch
# define prepare_arch_switch(rq, next) do { } while (0)
# define finish_arch_switch(rq, next) spin_unlock_irq(&(rq)->lock)
# define task_running(rq, p) ((rq)->curr == (p))
#endif
也就是说,它将保持rq->lock
直到switch_to()
返回,然后,宏finish_arch_switch()
实际上会释放锁。
假设有任务A,B和C.现在A调用schedule()
并切换到B(现在,rq->lock
被锁定)。迟早,B会拨打schedule()
。此时,B如何获得rq->lock
,因为它被A?
还有一些依赖于arch的实现,例如:
/*
* On IA-64, we don't want to hold the runqueue's lock during the low-level context-switch,
* because that could cause a deadlock. Here is an example by Erich Focht:
*
* Example:
* CPU#0:
* schedule()
* -> spin_lock_irq(&rq->lock)
* -> context_switch()
* -> wrap_mmu_context()
* -> read_lock(&tasklist_lock)
*
* CPU#1:
* sys_wait4() or release_task() or forget_original_parent()
* -> write_lock(&tasklist_lock)
* -> do_notify_parent()
* -> wake_up_parent()
* -> try_to_wake_up()
* -> spin_lock_irq(&parent_rq->lock)
*
* If the parent's rq happens to be on CPU#0, we'll wait for the rq->lock
* of that CPU which will not be released, because there we wait for the
* tasklist_lock to become available.
*/
#define prepare_arch_switch(rq, next) \
do { \
spin_lock(&(next)->switch_lock); \
spin_unlock(&(rq)->lock); \
} while (0)
#define finish_arch_switch(rq, prev) spin_unlock_irq(&(prev)->switch_lock)
在这种情况下,我非常确定此版本会在调用rq->lock
之前解锁context_switch()
之后做正确的事。
但是默认实现会发生什么?它怎么能做对的?
答案 0 :(得分:0)
我在linux 2.6.32.68的context_switch()
中找到了一条评论,它在代码下讲述了这个故事:
/*
* Since the runqueue lock will be released by the next
* task (which is an invalid locking op but in the case
* of the scheduler it's an obvious special-case), so we
* do an early lockdep release here:
*/
然而我们没有在lock
被锁定的情况下切换到另一个任务,下一个任务将解锁它,如果新创建了下一个任务,函数ret_from_fork()
也将最终调用finish_task_switch()
解锁rq->lock