我需要知道回报(在真实情况下他们被模拟)的倒退历史价格。 到目前为止,我有这段代码:
library(quantmod)
getSymbols("AAPL")
df = AAPL["2014-01-01/2015-01-01", "AAPL.Close"]
df_ret = diff(log(df),1)
# imagine the half of the past prices are missing
df["2014-01-01/2014-07-01"] = NA
df_tot = cbind(df, df_ret)
fillBackwards = function(data, range_to_fill){
index_array = index(data[range_to_fill,])
data_out = data
for (i in (length(index_array)-1):1){
inx = index_array[i]
inx_0 = index_array[i+1]
data_out[inx,1] = exp(-(data_out[inx_0,2]))*(data_out[inx_0,1])
}
return (data_out)
}
df_filled = fillBackwards(df_tot,"2014-01-01/2014-07-02")
sum(AAPL["2014-01-01/2015-01-01", "AAPL.Close"] - df_filled[,1]) # zero up to computation error, i.e. identical
这很完美,但有点慢。你能否使用内置rollapply()
来推荐一些东西# i want something like this
df_filled = rollapply(df_tot["2014-07-02/2014-01-01",], by=-1, function(x) {....})
答案 0 :(得分:1)
您不需要rollapply
或循环。您可以在退货时使用cumprod
。这是使用fillBackwards
的{{1}}版本:
cumprod