对于每3小时20GB数据文件等模式批量加载Bigtable的最佳方法是什么?数据流是否正确?
我们使用Dataflow批量加载Bigtable的问题是..
看起来Dataflow QPS与Bigtable(5个节点)的QPS不匹配。我正在尝试使用Dataflow将20GB文件加载到bigtable。需要4小时才能摄入bigtable。此外,我一直在运行期间收到此警告..
{
"code" : 429,
"errors" : [ {
"domain" : "global",
"message" : "Request throttled due to project QPS limit being reached.",
"reason" : "rateLimitExceeded"
} ],
"message" : "Request throttled due to project QPS limit being reached.",
"status" : "RESOURCE_EXHAUSTED"
}.
代码:
// CloudBigtableOptions is one way to retrieve the options. It's not
// required.
CloudBigtableOptions options = PipelineOptionsFactory.fromArgs(btargs.toArray(new String[btargs.size()]))
.withValidation().as(CloudBigtableOptions.class);
// CloudBigtableTableConfiguration contains the project, zone, cluster
// and table to connect to.
CloudBigtableTableConfiguration config = CloudBigtableTableConfiguration.fromCBTOptions(options);
Pipeline p = Pipeline.create(options);
// This sets up serialization for Puts and Deletes so that Dataflow can
// potentially move them through the network.
CloudBigtableIO.initializeForWrite(p);
p.apply(TextIO.Read.from(inpath)).apply(ParDo.of(new CreatePutsFn(columns, delim)))
.apply(CloudBigtableIO.writeToTable(config));
p.run();
CreatePutsFn:
@Override
public void processElement(DoFn<String, Mutation>.ProcessContext c) throws Exception {
String[] vals = c.element().split(this.delim);
for (int i = 0; i < columns.length; i++) {
if (i != keyPos && vals[i].trim() != "") {
c.output(new Put(vals[keyPos].getBytes()).addColumn(FAMILY, Bytes.toBytes(columns[i].toLowerCase()),
Bytes.toBytes(vals[i])));
}
}
}
非常感谢任何帮助。感谢
答案 0 :(得分:3)
我能够解决这个问题。我做了以下三件事来达到预期的效果。现在这个作业运行并在大约15分钟内为一个(20 Gb)文件摄取数据..这个文件以前运行了4-5个小时。
public void processElement(DoFn<String, Mutation>.ProcessContext c) throws Exception {
String[] vals = c.element().split(this.delim);
Put put = new Put(vals[keyPos].getBytes());
for (int i = 0; i < columns.length; i++) {
if (i != keyPos && vals[i].trim() != "") {
put.addColumn(FAMILY, Bytes.toBytes(columns[i].toLowerCase()), Bytes.toBytes(vals[i]));
}
}
c.output(put);
}
我添加了客户端写缓冲区的属性
config.toHBaseConfig().set("hbase.client.write.buffer", "200971520”);
你对QPS的限制达到了极限。因此,在批量加载操作期间,我暂时将簇大小提升到10个节点(从3开始)。