我使用以下代码获取Kamada-Kawai布局:
<html>
<head>
<title>Sort</title>
<script data-require="polymer@*" data-semver="1.0.0" src="http://www.polymer-project.org/1.0/samples/components/webcomponentsjs/webcomponents-lite.js"></script>
<script data-require="polymer@*" data-semver="1.0.0" src="http://www.polymer-project.org/1.0/samples/components/polymer/polymer.html"></script>
<base href="http://element-party.xyz/" />
<link rel="import" href="all-elements.html" />
</head>
<body>
<dom-module id="my-element">
<template>
<template is="dom-repeat" items={{numbers}} sort="_mySort">
<div>[[item.num]]</div>
</template>
</template>
<script>
Polymer({
is: "my-element",
ready: function() {
this.numbers = [{
num: 1
}, {
num: 3
}, {
num: 2
}, ];
},
_mySort: function(a, b) {
return b.num - a.num;
}
});
</script>
</dom-module>
<my-element></my-element>
</body>
</html>
使用以下类型:
图表类型为:
template <class PointMap>
PointMap layout() const {
PointMap res;
boost::associative_property_map<PointMap> temp(res);
minstd_rand gen;
rectangle_topology<> rect_top(gen, 0, 0, 50, 50);
random_graph_layout(g_, temp, rect_top); // random layout to show that
// Kamada-Kawai isn't doing the job
// circle_graph_layout(g_, temp, 10.0);
// http://stackoverflow.com/q/33903879/2725810
// http://stackoverflow.com/a/8555715/2725810
typedef std::map<VertexDescriptor, std::size_t> IndexMap;
IndexMap mapIndex;
associative_property_map<IndexMap> propmapIndex(mapIndex);
// http://www.boost.org/doc/libs/1_59_0/libs/graph/doc/bundles.html
kamada_kawai_spring_layout(
g_, temp,
boost::make_transform_value_property_map([](int i)
->double { return i; },
get(edge_bundle, g_)),
//get(edge_bundle, g_),
square_topology<>(50.0), side_length(50.0),
//layout_tolerance<CostType>(0.01),
kamada_kawai_done(),
CostType(1), propmapIndex);
return res;
}
其中boost::adjacency_list<vecS, setS, undirectedS, State, CostType>;
为CostType
。
int
是:
PointMap
这是我正在使用的停止条件:
std::map<VertexDescriptor, square_topology<>::point_type>
请注意,它会在每次迭代时显示struct kamada_kawai_done
{
kamada_kawai_done() : last_delta() {}
template<typename Graph>
bool operator()(double delta_p,
typename boost::graph_traits<Graph>::vertex_descriptor /*p*/,
const Graph& /*g*/,
bool global)
{
if (global) {
double diff = last_delta - delta_p;
if (diff < 0) diff = -diff;
std::cout << "delta_p: " << delta_p << std::endl;
last_delta = delta_p;
return diff < 0.01;
} else {
return delta_p < 0.01;
}
}
double last_delta;
};
。
我正在运行这个只有六个顶点的简单图形。 delta_p
只显示一次,它是0.鉴于初始布局是随机的,这真的很奇怪。这是我得到的图片:
正如你所看到的,随机布局并不漂亮,而Kamada-Kawai也没有做到这一点。
我尝试了另一个停止条件:delta_p
。这导致Kamada-Kawai永远奔跑。
我在这里做错了什么?
P.S。:由于我无法在浏览器中看到图片,以防它没有附加,这里是图形的邻接结构。该图表示三个煎饼情况下的煎饼拼图的状态空间。也就是说,顶点对应于数字0,1,2的不同排列,并且每个顶点有两条边(都具有权重1):
layout_tolerance<CostType>(0.01)
更新:这是我的代码,用于实现已接受的答案:
[0, 2, 1]:
[2, 0, 1] (w=1)
[1, 2, 0] (w=1)
[2, 0, 1]:
[0, 2, 1] (w=1)
[1, 0, 2] (w=1)
[1, 2, 0]:
[0, 2, 1] (w=1)
[2, 1, 0] (w=1)
[2, 1, 0]:
[1, 2, 0] (w=1)
[0, 1, 2] (w=1)
[1, 0, 2]:
[2, 0, 1] (w=1)
[0, 1, 2] (w=1)
[0, 1, 2]:
[1, 0, 2] (w=1)
[2, 1, 0] (w=1)
对于6个顶点,布局是一个完美的sexagon,所以它的工作原理!对于24个顶点,最后显示的template <class PointMap> PointMap layout() const {
PointMap res;
// Make a copy into a graph that is easier to deal with:
// -- vecS for vertex set, so there is index map
// -- double for edge weights
using LayoutGraph =
boost::adjacency_list<vecS, vecS, undirectedS, int, double>;
using LayoutVertexDescriptor =
typename graph_traits<LayoutGraph>::vertex_descriptor;
std::map<VertexDescriptor, LayoutVertexDescriptor> myMap;
std::map<LayoutVertexDescriptor, VertexDescriptor> myReverseMap;
LayoutGraph lg; // This is the copy
// Copy vertices
for (auto vd : vertexRange()) {
auto lvd = add_vertex(lg);
myMap[vd] = lvd;
myReverseMap[lvd] = vd;
}
// Copy edges
for (auto from: vertexRange()) {
for (auto to: adjacentVertexRange(from)) {
auto lfrom = myMap[from], lto = myMap[to];
if (!edge(lfrom, lto, lg).second)
add_edge(lfrom, lto, (double)(g_[edge(to, from, g_).first]),
lg);
}
}
// Done copying
using LayoutPointMap =
std::map<LayoutVertexDescriptor, square_topology<>::point_type>;
LayoutPointMap intermediateResults;
boost::associative_property_map<LayoutPointMap> temp(
intermediateResults);
minstd_rand gen;
rectangle_topology<> rect_top(gen, 0, 0, 100, 100);
random_graph_layout(lg, temp, rect_top);
// circle_graph_layout(lg, temp, 10.0);
kamada_kawai_spring_layout(lg, temp, get(edge_bundle, lg),
square_topology<>(100.0), side_length(100.0),
//layout_tolerance<CostType>(0.01));
kamada_kawai_done());
for (auto el: intermediateResults)
res[myReverseMap[el.first]] = el.second;
return res;
}
是~2.25(不应该低于0.01?)。此外,从随机布局开始时的布局比从圆形布局开始时更漂亮......
使用较小的矩形(例如20乘20而不是100乘100)会导致布局不太美观,因此使用delta_p
作为停止条件。
答案 0 :(得分:2)
我认为中间近似可能存储在实际的边缘束属性中,这使得它转换为整数。
由于输入的规模,它显然失去了实现(局部)最佳布局的重要数字。我建议用边缘束加一个看看会发生什么。