我正在对某些数据进行kNN分类。我有随机分割的数据,用于80/20比率的训练和测试集。
我的数据如下:
[ [1.0, 1.52101, 13.64, 4.49, 1.1, 71.78, 0.06, 8.75, 0.0, 0.0, 1.0],
[2.0, 1.51761, 13.89, 3.6, 1.36, 72.73, 0.48, 7.83, 0.0, 0.0, 2.0],
[3.0, 1.51618, 13.53, 3.55, 1.54, 72.99, 0.39, 7.78, 0.0, 0.0, 3.0],
...
]
矩阵的最后一列中的项目是类:1.0,2.0和3.0
在功能规范化之后,我的数据如下所示:
[[-0.5036443480260487, -0.03450760227559746, 0.06723230162846759, 0.23028986544844693, -0.025324623254270005, 0.010553065215338569, 0.0015136367098358505, -0.11291235596166802, -0.05819669234942126, -0.12069793876044387, 1.0],
[-0.4989050339943617, -0.11566537753097901, 0.010637426608816412, 0.2175704556290625, 0.03073267976659575, 0.05764598316498372, -0.012976783512350588, -0.11815839520204152, -0.05819669234942126, -0.12069793876044387, 2.0],
...
]
我用于规范化的公式:
(X - avg(X)) / (max(X) - min(X))
我对 K = 1到25 (仅限奇数)中的每一个执行kNN分类 100 次。我记录了每个 K 的平均准确度。 这是我的结果:
Average accuracy for K=1 after 100 tests with different data split: 98.91313003886198 %
Average accuracy for K=3 after 100 tests with different data split: 98.11976006170633 %
Average accuracy for K=5 after 100 tests with different data split: 97.71226079929019 %
Average accuracy for K=7 after 100 tests with different data split: 97.47493145754373 %
Average accuracy for K=9 after 100 tests with different data split: 97.16596220947888 %
Average accuracy for K=11 after 100 tests with different data split: 96.81465365733266 %
Average accuracy for K=13 after 100 tests with different data split: 95.78772655522567 %
Average accuracy for K=15 after 100 tests with different data split: 95.23116406332706 %
Average accuracy for K=17 after 100 tests with different data split: 94.52371789094929 %
Average accuracy for K=19 after 100 tests with different data split: 93.85285871435981 %
Average accuracy for K=21 after 100 tests with different data split: 93.26620809747965 %
Average accuracy for K=23 after 100 tests with different data split: 92.58047022661833 %
Average accuracy for K=25 after 100 tests with different data split: 90.55746523509124 %
但是当我应用特征归一化时,准确率显着下降。 我的kNN结果具有标准化特征:
Average accuracy for K=1 after 100 tests with different data split: 88.56128075154439 %
Average accuracy for K=3 after 100 tests with different data split: 85.01466511662318 %
Average accuracy for K=5 after 100 tests with different data split: 83.32096281613967 %
Average accuracy for K=7 after 100 tests with different data split: 83.09434478900455 %
Average accuracy for K=9 after 100 tests with different data split: 82.05628926919964 %
Average accuracy for K=11 after 100 tests with different data split: 79.89732262550343 %
Average accuracy for K=13 after 100 tests with different data split: 79.60617886853211 %
Average accuracy for K=15 after 100 tests with different data split: 79.26511126374507 %
Average accuracy for K=17 after 100 tests with different data split: 77.51457877706329 %
Average accuracy for K=19 after 100 tests with different data split: 76.97848441605367 %
Average accuracy for K=21 after 100 tests with different data split: 75.70005919265326 %
Average accuracy for K=23 after 100 tests with different data split: 76.45758217099551 %
Average accuracy for K=25 after 100 tests with different data split: 76.16619492431572 %
我在代码中的算法没有逻辑错误,我在简单数据上检查过它。
为什么 kNN 分类的准确率在特征规范化之后会降低这么多?我认为标准化本身并不会降低任何分类的准确率。那么使用特征规范化的目的是什么?
答案 0 :(得分:3)
一般误解是规范化永远不会降低分类准确性。它很好。
如何?
连续的相对值也非常重要。事实上,它们确定了特征空间中点的位置。执行标准化时,它会严重抵消相对位置。这是感觉到的,特别是在k-NN分类中,因为它直接在点之间的距离上操作。与此相比,它在SVM中的效果并不那么强烈,因为在这种情况下,优化过程仍然可以找到一个相当准确的超平面。
您还应该注意,在这里,您使用avg(X)进行标准化。因此,考虑特定行的相邻列中的两个点。如果第一个点远低于平均值,并且第二个点远远高于其各自列的平均值,则在非标准化意义上,它们是非常接近的数值,距离计算可能会有很大差异。
永远不要指望正常化会创造奇迹。
答案 1 :(得分:2)
KNN的工作方式是找到与之类似的实例。因为它计算两点之间的Euclidean Distance
。现在通过标准化,您正在改变改变精度的特征尺度。
看看this研究。转到数字,你会发现不同的缩放技术给出了不同的精度。