我几天前因为我要描述的问题而陷入困境。我遵循Daniel Nouri关于深度学习的教程:http://danielnouri.org/notes/category/deep-learning/,我试图让他的例子适应分类数据集。我的问题是,如果我将数据集视为回归问题,它可以正常工作,但如果我尝试执行分类,则会失败。我试着写两个可重复的例子。
1)回归(效果很好)
import lasagne
from sklearn import datasets
import numpy as np
from lasagne import layers
from lasagne.updates import nesterov_momentum
from nolearn.lasagne import NeuralNet
from sklearn.preprocessing import StandardScaler
iris = datasets.load_iris()
X = iris.data[iris.target<2] # we only take the first two features.
Y = iris.target[iris.target<2]
stdscaler = StandardScaler(copy=True, with_mean=True, with_std=True)
X = stdscaler.fit_transform(X).astype(np.float32)
y = np.asmatrix((Y-0.5)*2).T.astype(np.float32)
print X.shape, type(X)
print y.shape, type(y)
net1 = NeuralNet(
layers=[ # three layers: one hidden layer
('input', layers.InputLayer),
('hidden', layers.DenseLayer),
('output', layers.DenseLayer),
],
# layer parameters:
input_shape=(None, 4), # 96x96 input pixels per batch
hidden_num_units=10, # number of units in hidden layer
output_nonlinearity=None, # output layer uses identity function
output_num_units=1, # 1 target value
# optimization method:
update=nesterov_momentum,
update_learning_rate=0.01,
update_momentum=0.9,
regression=True, # flag to indicate we're dealing with regression problem
max_epochs=400, # we want to train this many epochs
verbose=1,
)
net1.fit(X, y)
2)分类(它引起矩阵维度的误差;我将其粘贴在下面)
import lasagne
from sklearn import datasets
import numpy as np
from lasagne import layers
from lasagne.nonlinearities import softmax
from lasagne.updates import nesterov_momentum
from nolearn.lasagne import NeuralNet
from sklearn.preprocessing import StandardScaler
iris = datasets.load_iris()
X = iris.data[iris.target<2] # we only take the first two features.
Y = iris.target[iris.target<2]
stdscaler = StandardScaler(copy=True, with_mean=True, with_std=True)
X = stdscaler.fit_transform(X).astype(np.float32)
y = np.asmatrix((Y-0.5)*2).T.astype(np.int32)
print X.shape, type(X)
print y.shape, type(y)
net1 = NeuralNet(
layers=[ # three layers: one hidden layer
('input', layers.InputLayer),
('hidden', layers.DenseLayer),
('output', layers.DenseLayer),
],
# layer parameters:
input_shape=(None, 4), # 96x96 input pixels per batch
hidden_num_units=10, # number of units in hidden layer
output_nonlinearity=softmax, # output layer uses identity function
output_num_units=1, # 1 target value
# optimization method:
update=nesterov_momentum,
update_learning_rate=0.01,
update_momentum=0.9,
regression=False, # flag to indicate we're dealing with classification problem
max_epochs=400, # we want to train this many epochs
verbose=1,
)
net1.fit(X, y)
我使用代码2获得的输出失败。
(100, 4) <type 'numpy.ndarray'>
(100, 1) <type 'numpy.ndarray'>
input (None, 4) produces 4 outputs
hidden (None, 10) produces 10 outputs
output (None, 1) produces 1 outputs
---------------------------------------------------------------------------
IndexError Traceback (most recent call last)
<ipython-input-13-184a45e5abaa> in <module>()
40 )
41
---> 42 net1.fit(X, y)
/Users/ivanvallesperez/anaconda/lib/python2.7/site-packages/nolearn/lasagne/base.pyc in fit(self, X, y)
291
292 try:
--> 293 self.train_loop(X, y)
294 except KeyboardInterrupt:
295 pass
/Users/ivanvallesperez/anaconda/lib/python2.7/site-packages/nolearn/lasagne/base.pyc in train_loop(self, X, y)
298 def train_loop(self, X, y):
299 X_train, X_valid, y_train, y_valid = self.train_test_split(
--> 300 X, y, self.eval_size)
301
302 on_epoch_finished = self.on_epoch_finished
/Users/ivanvallesperez/anaconda/lib/python2.7/site-packages/nolearn/lasagne/base.pyc in train_test_split(self, X, y, eval_size)
399 kf = KFold(y.shape[0], round(1. / eval_size))
400 else:
--> 401 kf = StratifiedKFold(y, round(1. / eval_size))
402
403 train_indices, valid_indices = next(iter(kf))
/Users/ivanvallesperez/anaconda/lib/python2.7/site-packages/sklearn/cross_validation.pyc in __init__(self, y, n_folds, shuffle, random_state)
531 for test_fold_idx, per_label_splits in enumerate(zip(*per_label_cvs)):
532 for label, (_, test_split) in zip(unique_labels, per_label_splits):
--> 533 label_test_folds = test_folds[y == label]
534 # the test split can be too big because we used
535 # KFold(max(c, self.n_folds), self.n_folds) instead of
IndexError: too many indices for array
这里发生了什么?我做坏事吗?我尝试了一切,但我无法弄清楚发生了什么。
请注意,我刚刚使用以下命令更新了我的千篇一律和依赖项:pip install -r https://raw.githubusercontent.com/dnouri/kfkd-tutorial/master/requirements.txt
提前致谢
我通过执行后续更改实现了它的工作,但我仍有一些疑问:
我将Y定义为一维向量,其中0/1值为:y = Y.astype(np.int32)
,但我仍有疑点
我不得不将参数output_num_units=1
更改为output_num_units=2
而且我不确定是否因为我正在使用二进制分类问题并且我认为这个多层感知器应该只有1个输出神经元,而不是其中2个......我错了吗?
我还尝试将成本函数更改为ROC-AUC。我知道有一个名为objective_loss_function
的参数,默认情况下定义为objective_loss_function=lasagne.objectives.categorical_crossentropy
,但是......如何使用ROC AUC作为代价函数而不是分类交叉熵?
由于
答案 0 :(得分:1)
如果你进行分类,那么output_num_units
就是你有多少课程。虽然只用一个输出单元就可以实现两个类别的分类,但在nolearn中并没有特殊的类型,例如[1]:
if not self.regression:
predict = predict_proba.argmax(axis=1)
请注意,无论你有多少个类,预测总是argmax(暗示两个类别分类有两个输出,而不是一个)。
因此,您的更改是正确的:output_num_units
应该始终是您拥有的课程数量,即使您有两个,Y
的形状应为(num_samples)
或{{ 1}}包含表示类别的整数值,而不是例如,每个类别具有形状(num_samples, 1)
的位的向量。
回答您的其他问题,Lasagne似乎没有(num_samples, num_categories)
目标,因此您需要实施它。请注意,您不能使用scikit-learn中的实现,例如,因为Lasagne要求目标函数将theano tensors作为参数,而不是列表或ndarrays。要了解如何在Lasagne中实现目标函数,您可以查看现有的目标函数[2]。其中很多都是指theano中的那些,你可以在[3]中看到它们的实现(它将自动滚动到ROC-AUC
,这是目标函数的一个很好的例子。)
[1] https://github.com/dnouri/nolearn/blob/master/nolearn/lasagne/base.py#L414
[2] https://github.com/Lasagne/Lasagne/blob/master/lasagne/objectives.py
[3] https://github.com/Theano/Theano/blob/master/theano/tensor/nnet/nnet.py#L1809