如何根据其他列的值同时添加几个新列?我只找到一次添加一行的示例。
我可以添加3个新列,但这似乎没有效率,因为它必须遍历所有行3次。 有没有办法遍历DF一次?
import pandas as pd
from decimal import Decimal
d = [
{'A': 2, 'B': Decimal('628.00')},
{'A': 1, 'B': Decimal('383.00')},
{'A': 3, 'B': Decimal('651.00')},
{'A': 2, 'B': Decimal('575.00')},
{'A': 4, 'B': Decimal('1114.00')},
]
df = pd.DataFrame(d)
In : df
Out:
A B
0 2 628.00
1 1 383.00
2 3 651.00
3 2 575.00
4 4 1114.00
# How to do those in one operation to avoid traversing the DF 3 times
df['C'] = df.apply(lambda row: row['B']-1000, axis=1)
df['D'] = df.apply(lambda row: row['B']*row['B'], axis=1)
df['E'] = df.apply(lambda row: row['B']/2, axis=1)
In : df
Out:
A B C D E
0 2 628.00 -372.00 394384.0000 314.00
1 1 383.00 -617.00 146689.0000 191.50
2 3 651.00 -349.00 423801.0000 325.50
3 2 575.00 -425.00 330625.0000 287.50
4 4 1114.00 114.00 1240996.0000 557.00
答案 0 :(得分:1)
我不会使用lambda函数。简单的矢量化实现既快又易读。
df['C'] = df['B'] - 1000
df['D'] = df['B'] ** 2
df['E'] = df['B'] / 2
>>> df
A B C D E
0 2 628.00 -372.00 394384.0000 314.00
1 1 383.00 -617.00 146689.0000 191.50
2 3 651.00 -349.00 423801.0000 325.50
3 2 575.00 -425.00 330625.0000 287.50
4 4 1114.00 114.00 1240996.0000 557.00
让我们把时间安排在一百万行的数据框上:
df = pd.concat([df for _ in range(200000)], ignore_index=True)
>>> df.shape
(1000000, 2)
>>> %%timeit -n 3
df['C'] = df.apply(lambda row: row['B'] - 1000, axis=1)
df['D'] = df.apply(lambda row: row['B'] * row['B'], axis=1)
df['E'] = df.apply(lambda row: row['B'] / 2, axis=1)
3 loops, best of 3: 1min 20s per loop
>>> %%timeit -n 3
df['C'] = df['B'] - 1000
df['D'] = df['B'] ** 2
df['E'] = df['B'] / 2
3 loops, best of 3: 49.7 s per loop
如果您取消了Decimal类型并使用了浮点数,那么速度明显更快:
d = [
{'A': 2, 'B': 628.00},
{'A': 1, 'B': 383.00},
{'A': 3, 'B': 651.00},
{'A': 2, 'B': 575.00},
{'A': 4, 'B': 1114.00}]
df = pd.DataFrame(d)
df = pd.concat([df for _ in range(200000)], ignore_index=True)
>>> %%timeit -n 3
df['C'] = df['B'] - 1000
df['D'] = df['B'] ** 2
df['E'] = df['B'] / 2
3 loops, best of 3: 33.1 ms per loop
>>> df.shape
(1000000, 5)