我需要在二叉搜索树中进行范围搜索功能,这将给出给定范围内的项目的数量。我不了解如何在找到项目时增加计数值。因为,我必须使用递归函数&如果我在递归过程中将count变量初始化为0,它将始终从0开始计数值,而不是计数中已更新的值。
int rangeSearch(struct treeNode * node, int leftBound, int rightBound)
{
int count=0;
if( node->item >= leftBound & node->item <= rightBound)
{
printf("%d ",node->item);
count++;
}
if( node->left!=0 & node->item > leftBound) rangeSearch( node -> left, leftBound , rightBound );
else if( node->right!=0 & node->item < rightBound )rangeSearch( node -> right, leftBound , rightBound );
return count;
}
答案 0 :(得分:1)
这是我的第一个答案,所以我很抱歉我的英语不好。
在这样的每个递归问题中,考虑问题的最简单方法是:
- 解决“基本案例”,这通常是微不足道的。 (对于大多数数据结构,通常是空结构或单元素结构。)
- 解决组成结构的子结构的一般情况(例如,在考虑树时,这是在考虑LEFT子树和RIGHT子树的情况下完成的)假设您可以依赖于子结构的解。
我确定我没有很好地解释,所以让我做一个简单的例子:
我们想要计算BST中的TOTAL元素数。 解决方法是:
int countElement(struct treeNode* node)
{
if(node == null)
{
//we are in the base case: the tree is empty, so we can return zero.
return 0;
}
else
{
/*the tree is not empty:
We return 1 (the element that we are considering)
+ the elements of the left subtree
+ the elements of the right subtree.*/
return 1 + countElement(node->left) + countElement(node->right);
}
}
如果您明白这一点,我们可以继续您的请求:
int rangeSearch(struct treeNode * node, int leftBound, int rightBound)
{
if(node == 0)
{
//base case: the tree is empty, we can return 0
return 0;
}
else
{
/*our tree is not empty.
Remember that we can assume that the procedure called on
the left and right child is correct.*/
int countLeft = rangeSearch(node->left, leftBound, rightBound);
int countRight = rangeSearch(node->right, leftBound, rightBound);
/*So what we have to return?
if the current node->item is between leftbound and rightbound,
we return 1 (our node->item is valid) + rangeSearch called
on the left and child subtree with the same identical range.*/
if(node->item > leftBound && node->item < rightBound)
{
/*the element is in the range: we MUST count it
in the final result*/
return 1 + countLeft + countRight;
}
else
{
/*the element is not in the range: we must NOT count it
in the final result*/
return 0 + countLeft + countRight;
}
}
}
请记住,关键部分是如果你定义和解决基本情况,那么当你考虑更大的结构时,你可以假设你的SUBSTRUCTURE上调用的递归过程做了正确的事情并返回正确的价值。
答案 1 :(得分:0)
据我了解,由于count
在rangeSearch
中是本地的,因此必须按如下方式更改实施,以实现所需的评估。
int rangeSearch(struct treeNode * node, int leftBound, int rightBound)
{
int count=0;
if( node->item >= leftBound & node->item <= rightBound)
{
printf("%d ",node->item);
count++;
}
if( node->left!=0 & node->item > leftBound)
count += rangeSearch( node->left, leftBound, rightBound );
if( node->right!=0 & node->item < rightBound )
count += rangeSearch( node->right, leftBound, rightBound );
return count;
}