为什么数字1,2和3使用C rand()函数经常出现?

时间:2010-08-01 09:24:39

标签: c random

我要做的是生成一些随机数(不一定是单个数字),如

29106
7438
5646
4487
9374
28671
92
13941
25226
10076

然后计算我得到的位数:

count[0] =       3  Percentage =  6.82
count[1] =       5  Percentage = 11.36
count[2] =       6  Percentage = 13.64
count[3] =       3  Percentage =  6.82
count[4] =       6  Percentage = 13.64
count[5] =       2  Percentage =  4.55
count[6] =       7  Percentage = 15.91
count[7] =       5  Percentage = 11.36
count[8] =       3  Percentage =  6.82
count[9] =       4  Percentage =  9.09

这是我正在使用的代码:

#include <stdio.h>
#include <time.h>
#include <stdlib.h>

int main() {

    int i;
    srand(time(NULL));
    FILE* fp = fopen("random.txt", "w");    
    // for(i = 0; i < 10; i++)
    for(i = 0; i < 1000000; i++)
        fprintf(fp, "%d\n", rand());
    fclose(fp);

    int dummy;
    long count[10] = {0,0,0,0,0,0,0,0,0,0};
    fp = fopen("random.txt", "r");
    while(!feof(fp)) {
        fscanf(fp, "%1d", &dummy);
        count[dummy]++;                 
    }
    fclose(fp);

    long sum = 0;
    for(i = 0; i < 10; i++)
        sum += count[i];

    for(i = 0; i < 10; i++)
        printf("count[%d] = %7ld  Percentage = %5.2f\n",
            i, count[i], ((float)(100 * count[i])/sum));

}

如果我生成大量随机数(1000000),这就是我得到的结果:

count[0] =  387432  Percentage =  8.31
count[1] =  728339  Percentage = 15.63
count[2] =  720880  Percentage = 15.47
count[3] =  475982  Percentage = 10.21
count[4] =  392678  Percentage =  8.43
count[5] =  392683  Percentage =  8.43
count[6] =  392456  Percentage =  8.42
count[7] =  391599  Percentage =  8.40
count[8] =  388795  Percentage =  8.34
count[9] =  389501  Percentage =  8.36

请注意,1,2和3的点击次数过多。我尝试过多次运行,每次都得到非常相似的结果。

我试图了解可能导致1,2和3出现频率高于其他任何数字的原因。


从Matt Joiner和Pascal Cuoq所指出的提示,

我将代码更改为

for(i = 0; i < 1000000; i++)
    fprintf(fp, "%04d\n", rand() % 10000);
// pretty prints 0
// generates numbers in range 0000 to 9999

这就是我得到的(多次运行时类似的结果):

count[0] =  422947  Percentage = 10.57
count[1] =  423222  Percentage = 10.58
count[2] =  414699  Percentage = 10.37
count[3] =  391604  Percentage =  9.79
count[4] =  392640  Percentage =  9.82
count[5] =  392928  Percentage =  9.82
count[6] =  392737  Percentage =  9.82
count[7] =  392634  Percentage =  9.82
count[8] =  388238  Percentage =  9.71
count[9] =  388352  Percentage =  9.71

0,1和2受青睐的原因是什么?


谢谢大家。使用

int rand2(){
    int num = rand();
    return (num > 30000? rand2():num);     
}

    fprintf(fp, "%04d\n", rand2() % 10000);

我得到了

count[0] =  399629  Percentage =  9.99
count[1] =  399897  Percentage = 10.00
count[2] =  400162  Percentage = 10.00
count[3] =  400412  Percentage = 10.01
count[4] =  399863  Percentage = 10.00
count[5] =  400756  Percentage = 10.02
count[6] =  399980  Percentage = 10.00
count[7] =  400055  Percentage = 10.00
count[8] =  399143  Percentage =  9.98
count[9] =  400104  Percentage = 10.00

6 个答案:

答案 0 :(得分:46)

rand()生成从0RAND_MAX的值。在大多数平台上,RAND_MAX设置为INT_MAX,可能是327672147483647

对于上面给出的示例,RAND_MAX似乎是32767。这将为12的值的最高有效数字设置异常高的31000032767。您可以观察到,在较小程度上,最高67的值也会略微受到青睐。

答案 1 :(得分:20)

关于编辑过的问题,

这是因为即使您% 10000,数字仍然不均匀分布。假设RAND_MAX == 32767rand()完全统一。

对于从0开始计算的每10,000个数字,所有数字将统一显示(每个4,000个)。但是,32,767不能被10,000整除。因此,这些2,768个数字将为最终计数提供更多前导0,1和2。

这2,768个数字的确切贡献是:

digits count
0      1857
1      1857
2      1625
3      857
4      857
5      857
6      855
7      815
8      746
9      746

将最初的30,000个数字加上12,000加到计数中,然后除以总数位数(4×32,768)就可以得到预期的分布:

number  probability (%)
0       10.5721
1       10.5721
2       10.3951
3        9.80911
4        9.80911
5        9.80911
6        9.80759
7        9.77707
8        9.72443
9        9.72443

这与你得到的很接近。

如果您想真正统一数字发布,则需要拒绝这些2,768个数字:

int rand_4digits() {
  const int RAND_MAX_4_DIGITS = RAND_MAX - RAND_MAX % 10000;
  int res;
  do {
    res = rand();
  } while (res >= RAND_MAX_4_DIGITS);
  return res % 10000;
}

答案 2 :(得分:7)

看起来像本福德定律 - 见http://en.wikipedia.org/wiki/Benford%27s_law,或者是一个不太好的RNG。

答案 3 :(得分:2)

这是因为您在0RAND_MAX之间生成了数字。生成的数字是均匀分布的(即每个数字的概率大致相同),然而,数字1,2,3比该范围内的其他数字更频繁地出现。尝试在010之间生成,其中每个数字以相同的概率出现,您将得到一个很好的分布。

答案 4 :(得分:2)

如果我理解OP(提出问题的人)想要什么,他们想要制作更好的随机数字。

rand()和random(),坦率地说,不要做很好的随机数;当他们对死硬和顽固分子(两个用于测试随机数质量的包裹)进行测试时,他们都表现不佳。

梅森捻线机是一种流行的随机数发生器,除了加密的随机数之外几乎所有的东西都很好;它以绚丽的色彩通过了所有的死硬(呃)测试。

如果需要加密强的随机数(无法猜到的数字,即使有人知道正在使用哪种特定的加密算法),那里还有许多流密码。我喜欢使用的那个叫做RadioGatún[32],这里有一个紧凑的C表示:

/*Placed in the public domain by Sam Trenholme*/
#include <stdint.h>
#include <stdio.h> 
#define p uint32_t
#define f(a) for(c=0;c<a;c++)
#define n f(3){b[c*13]^=s[c];a[16+c]^=s[c];}k(a,b 
k(p *a,p *b){p A[19],x,y,r,q[3],c,i;f(3){q[c]=b[c
*13+12];}for(i=12;i;i--){f(3){b[c*13+i]=b[c*13+i- 
1];}}f(3){b[c*13]=q[c];}f(12){i=c+1+((c%3)*13);b[
i]^=a[c+1];}f(19){y=(c*7)%19;r=((c*c+c)/2)%32;x=a
[y]^(a[(y+1)%19]|(~a[(y+2)%19]));A[c]=(x>>r)|(x<<
(32-r));}f(19){a[c]=A[c]^A[(c+1)%19]^A[(c+4)%19];
}a[0]^=1;f(3){a[c+13]^=q[c];}}l(p *a,p *b,char *v
){p s[3],q,c,r,x,d=0;for(;;){f(3){s[c]=0;}for(r=0
;r<3;r++){for(q=0;q<4;q++){if(!(x=*v&255)){d=x=1;
}v++;s[r]|=x<<(q*8);if(d){n);return;}}}n);}}main(
int j,char **h){p a[39],b[39],c,e,g;if(j==2){f(39
){a[c]=b[c]=0;}l(a,b,h[1]);f(16){k(a,b);}f(4){k(a
,b);for(j=1;j<3;++j){g=a[j];for(e=4;e;e--){printf
("%02x",g&255);g>>=8;}}}printf("\n");}}

还有很多其他非常好的随机数发生器。

答案 5 :(得分:0)

如果您想要从范围[0, x)生成随机值,而不是执行rand()%x,则应该应用公式x*((double)rand()/RAND_MAX),这将为您提供分布良好的随机值。

说,RAND_MAX等于15,因此rand将给出0到15之间的整数。当您使用模运算符从[0, 10)获取随机数时,值[0,5]将具有频率高于[6,9],因为3 == 3%10 == 13%10