我要做的是生成一些随机数(不一定是单个数字),如
29106
7438
5646
4487
9374
28671
92
13941
25226
10076
然后计算我得到的位数:
count[0] = 3 Percentage = 6.82
count[1] = 5 Percentage = 11.36
count[2] = 6 Percentage = 13.64
count[3] = 3 Percentage = 6.82
count[4] = 6 Percentage = 13.64
count[5] = 2 Percentage = 4.55
count[6] = 7 Percentage = 15.91
count[7] = 5 Percentage = 11.36
count[8] = 3 Percentage = 6.82
count[9] = 4 Percentage = 9.09
这是我正在使用的代码:
#include <stdio.h>
#include <time.h>
#include <stdlib.h>
int main() {
int i;
srand(time(NULL));
FILE* fp = fopen("random.txt", "w");
// for(i = 0; i < 10; i++)
for(i = 0; i < 1000000; i++)
fprintf(fp, "%d\n", rand());
fclose(fp);
int dummy;
long count[10] = {0,0,0,0,0,0,0,0,0,0};
fp = fopen("random.txt", "r");
while(!feof(fp)) {
fscanf(fp, "%1d", &dummy);
count[dummy]++;
}
fclose(fp);
long sum = 0;
for(i = 0; i < 10; i++)
sum += count[i];
for(i = 0; i < 10; i++)
printf("count[%d] = %7ld Percentage = %5.2f\n",
i, count[i], ((float)(100 * count[i])/sum));
}
如果我生成大量随机数(1000000),这就是我得到的结果:
count[0] = 387432 Percentage = 8.31
count[1] = 728339 Percentage = 15.63
count[2] = 720880 Percentage = 15.47
count[3] = 475982 Percentage = 10.21
count[4] = 392678 Percentage = 8.43
count[5] = 392683 Percentage = 8.43
count[6] = 392456 Percentage = 8.42
count[7] = 391599 Percentage = 8.40
count[8] = 388795 Percentage = 8.34
count[9] = 389501 Percentage = 8.36
请注意,1,2和3的点击次数过多。我尝试过多次运行,每次都得到非常相似的结果。
我试图了解可能导致1,2和3出现频率高于其他任何数字的原因。
从Matt Joiner和Pascal Cuoq所指出的提示,
我将代码更改为
for(i = 0; i < 1000000; i++)
fprintf(fp, "%04d\n", rand() % 10000);
// pretty prints 0
// generates numbers in range 0000 to 9999
这就是我得到的(多次运行时类似的结果):
count[0] = 422947 Percentage = 10.57
count[1] = 423222 Percentage = 10.58
count[2] = 414699 Percentage = 10.37
count[3] = 391604 Percentage = 9.79
count[4] = 392640 Percentage = 9.82
count[5] = 392928 Percentage = 9.82
count[6] = 392737 Percentage = 9.82
count[7] = 392634 Percentage = 9.82
count[8] = 388238 Percentage = 9.71
count[9] = 388352 Percentage = 9.71
0,1和2受青睐的原因是什么?
谢谢大家。使用
int rand2(){
int num = rand();
return (num > 30000? rand2():num);
}
fprintf(fp, "%04d\n", rand2() % 10000);
我得到了
count[0] = 399629 Percentage = 9.99
count[1] = 399897 Percentage = 10.00
count[2] = 400162 Percentage = 10.00
count[3] = 400412 Percentage = 10.01
count[4] = 399863 Percentage = 10.00
count[5] = 400756 Percentage = 10.02
count[6] = 399980 Percentage = 10.00
count[7] = 400055 Percentage = 10.00
count[8] = 399143 Percentage = 9.98
count[9] = 400104 Percentage = 10.00
答案 0 :(得分:46)
rand()
生成从0
到RAND_MAX
的值。在大多数平台上,RAND_MAX
设置为INT_MAX
,可能是32767
或2147483647
。
对于上面给出的示例,RAND_MAX
似乎是32767
。这将为1
到2
的值的最高有效数字设置异常高的3
,10000
和32767
。您可以观察到,在较小程度上,最高6
和7
的值也会略微受到青睐。
答案 1 :(得分:20)
关于编辑过的问题,
这是因为即使您% 10000
,数字仍然不均匀分布。假设RAND_MAX == 32767
,rand()
完全统一。
对于从0开始计算的每10,000个数字,所有数字将统一显示(每个4,000个)。但是,32,767不能被10,000整除。因此,这些2,768个数字将为最终计数提供更多前导0,1和2。
这2,768个数字的确切贡献是:
digits count
0 1857
1 1857
2 1625
3 857
4 857
5 857
6 855
7 815
8 746
9 746
将最初的30,000个数字加上12,000加到计数中,然后除以总数位数(4×32,768)就可以得到预期的分布:
number probability (%)
0 10.5721
1 10.5721
2 10.3951
3 9.80911
4 9.80911
5 9.80911
6 9.80759
7 9.77707
8 9.72443
9 9.72443
这与你得到的很接近。
如果您想真正统一数字发布,则需要拒绝这些2,768个数字:
int rand_4digits() {
const int RAND_MAX_4_DIGITS = RAND_MAX - RAND_MAX % 10000;
int res;
do {
res = rand();
} while (res >= RAND_MAX_4_DIGITS);
return res % 10000;
}
答案 2 :(得分:7)
看起来像本福德定律 - 见http://en.wikipedia.org/wiki/Benford%27s_law,或者是一个不太好的RNG。
答案 3 :(得分:2)
这是因为您在0
和RAND_MAX
之间生成了数字。生成的数字是均匀分布的(即每个数字的概率大致相同),然而,数字1,2,3比该范围内的其他数字更频繁地出现。尝试在0
和10
之间生成,其中每个数字以相同的概率出现,您将得到一个很好的分布。
答案 4 :(得分:2)
如果我理解OP(提出问题的人)想要什么,他们想要制作更好的随机数字。
rand()和random(),坦率地说,不要做很好的随机数;当他们对死硬和顽固分子(两个用于测试随机数质量的包裹)进行测试时,他们都表现不佳。
梅森捻线机是一种流行的随机数发生器,除了加密的随机数之外几乎所有的东西都很好;它以绚丽的色彩通过了所有的死硬(呃)测试。
如果需要加密强的随机数(无法猜到的数字,即使有人知道正在使用哪种特定的加密算法),那里还有许多流密码。我喜欢使用的那个叫做RadioGatún[32],这里有一个紧凑的C表示:
/*Placed in the public domain by Sam Trenholme*/
#include <stdint.h>
#include <stdio.h>
#define p uint32_t
#define f(a) for(c=0;c<a;c++)
#define n f(3){b[c*13]^=s[c];a[16+c]^=s[c];}k(a,b
k(p *a,p *b){p A[19],x,y,r,q[3],c,i;f(3){q[c]=b[c
*13+12];}for(i=12;i;i--){f(3){b[c*13+i]=b[c*13+i-
1];}}f(3){b[c*13]=q[c];}f(12){i=c+1+((c%3)*13);b[
i]^=a[c+1];}f(19){y=(c*7)%19;r=((c*c+c)/2)%32;x=a
[y]^(a[(y+1)%19]|(~a[(y+2)%19]));A[c]=(x>>r)|(x<<
(32-r));}f(19){a[c]=A[c]^A[(c+1)%19]^A[(c+4)%19];
}a[0]^=1;f(3){a[c+13]^=q[c];}}l(p *a,p *b,char *v
){p s[3],q,c,r,x,d=0;for(;;){f(3){s[c]=0;}for(r=0
;r<3;r++){for(q=0;q<4;q++){if(!(x=*v&255)){d=x=1;
}v++;s[r]|=x<<(q*8);if(d){n);return;}}}n);}}main(
int j,char **h){p a[39],b[39],c,e,g;if(j==2){f(39
){a[c]=b[c]=0;}l(a,b,h[1]);f(16){k(a,b);}f(4){k(a
,b);for(j=1;j<3;++j){g=a[j];for(e=4;e;e--){printf
("%02x",g&255);g>>=8;}}}printf("\n");}}
还有很多其他非常好的随机数发生器。
答案 5 :(得分:0)
如果您想要从范围[0, x)
生成随机值,而不是执行rand()%x
,则应该应用公式x*((double)rand()/RAND_MAX)
,这将为您提供分布良好的随机值。
说,RAND_MAX等于15,因此rand
将给出0到15之间的整数。当您使用模运算符从[0, 10)
获取随机数时,值[0,5]
将具有频率高于[6,9]
,因为3 == 3%10 == 13%10
。